Rubik's cube versus Sudoku

Peter Mayr

CU Boulder Math Club, November 16, 2016

1. Rubik's cube

Rubik's cube

Invented by Ernő Rubik (1974). 6 colored, revolving faces

Goal: After arbitrary rotations, return the faces to only show one color again.

Idea: Solving by layers

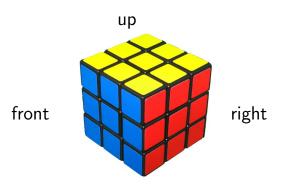
- 1. Solve top.
- 2. Solve sides, fixing the top.
- 3. Solve bottom, fixing the rest.

What is the math background?

- A sequence of rotations has to be reversed.
- Solution requires "computations with rotations".
- Abstract Algebra has tools for that (Computational Group Theory).

Rubik's cube as group

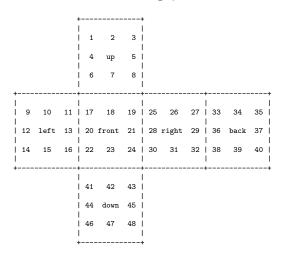
6 faces: front, back, up, down, left, right.



f ... rotation of the front face by 90° around the clock, etc.

Rotations f, b, u, d, l, r move the 8 corner and 12 edge pieces. The 6 central pieces remain fixed.

Enumerate the moving pieces a:



Rotation f yields permutation of pieces.

$$f: 17 \to 19 \to 24 \to 22 \to 17, 6 \to 25 \to \dots$$

What is Computational Group Theory?

Efficient computations with permutations to answer questions like:

1. How many configurations of the cube are there?

43 252 003 274 489 856 000

- 2. Can you twist a single corner of the cube? No, (6, 17, 11) is not generated by f, b, u, d, l, r.
- 3. How to write a permutation of the cube as a composition of f, b, u, d, l, r? (i.e., how to solve a twisted cube?)

Rubik's cube is in Pb

- 1. Computer Algebra can solve arbitrary $n \times n \times n$ cubes efficiently.
- 2. Time is linear in the number of moving pieces. $(n = 30 \text{ takes} \sim 100 \text{ times as long as } n = 3).$

bsolvable in Polynomial time by a deterministic Turing machine (computer)

How would God solve the cube?

- \blacktriangleright Computed solutions for the 3 \times 3 \times 3 cube take 60-100 rotations on average.
- What is the smallest number of rotations to solve any given configuration?

20

(Computer proof on Google's hardware^c)

2. Sudoku

Sudoku

 9×9 grid subdivided into 3×3 blocks Each number from 1 to 9 occurs exactly once in

- each row,
- each column,
- ▶ each 3 × 3 block.

Goal: Complete the grid starting from a few given numbers.

	3							
			1	9	5			
		8					6	
8				6				
4			8					1
				2				
	6					2	8	
			4	1	9			5
							7	

Every puzzle has exactly one completion.

```
    5
    3
    4
    6
    7
    8
    9
    1
    2

    6
    7
    2
    1
    9
    5
    3
    4
    8
    8
    8
    8
    8
    3
    4
    2
    5
    6
    6
    7

    8
    5
    9
    7
    6
    1
    4
    2
    3

    4
    2
    6
    8
    5
    3
    7
    9
    1

    7
    1
    3
    9
    2
    4
    8
    5
    6

    9
    6
    1
    5
    3
    7
    2
    8
    4

    2
    8
    7
    4
    1
    9
    6
    3
    5

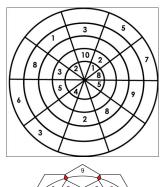
    3
    4
    5
    2
    8
    6
    1
    7
    9
```

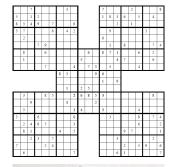
Sudoku history

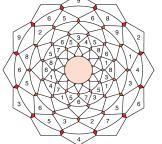
- The name comes from 'Suji wa dokushin ni kagiru' – Japanese for 'the digits must be single'.
- Grids are special Latin squares (Euler, 18th century).
- ▶ Similar games in France (\sim 1900).

- Modern version by Howard Garns (Dell Puzzle Magazine, 1979).
- ▶ Popular as Sudoku in Japan since 1980s.
- International since 2005.

Fun and games in all variations







What is the math background?

- Not about numbers they can be replaced by 9 arbitrary distinct symbols.
- Solution does not require calculations but logic.

Combinatorics

1. How many 9×9 Sudokus (full grids) are there?

6 670 903 752 021 072 936 960^d

2. How many are really distinct (up to permutation of numbers, rows, columns, rotations, reflections)?

5 472 730 538^e

3. How many distinct puzzles (partial grids) are there?

unknown

^dFelgenhauer & Jarvis. Enumerating possible Sudoku grids. 2005.

^eJarvis & Russell, 2005.

4. How many numbers need to be given to guarantee a unique completion?

17 or more^f

					2	7	5	
	1	8		9				
4	9							
	3							8
			7			2		
			Г	3				9
7								
5							8	

fMcGuire, Tugeman, Civario. There is no 16-clue Sudoku. 2014

Backtracking

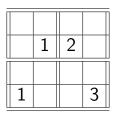
A simple algorithm in 2 steps:

- ► Forward: Insert the smallest possible number in the next free spot.
- Back: Replace the last choice by the next largest possible number.

Strategy:

- 1. Forward as long as possible.
- 2. If you cannot go forward, the last choice was wrong. Go back and then forward again.

Backtracking for a Sudokid



Human approach

1. Naked singles: Fix a place. Which number can be inserted?

	1	2	*
1			2

2. Hidden singles: Fix a number. In which spot of a row, column, block can it be inserted?

	1	2	
		2	2
1		2	3

3. Pairs, triples, X-wing, Swordfish, ... backtracking

Hardness of a puzzle is measured by the complexity of the strategies required for solving.

Backtracking is necessary only for the hardest Sudokus.

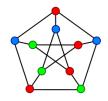
Solutions by computer

- 9 × 9 Sudokus are easily solved by backtracking.
- For $n \times n$ Sudokus in general there is no efficient algorithm know.
- ► Time for backtracking is exponential in the number of places to fill.
- ► n^2 places filled with numbers 1 to n: n^{n^2} options

Related problems

 $n \times n$ Sudokus are NP-complete problems^g. Hence they are equivalent to

Coloring graphs



NP-complete: the hardest problems in NP

 $^{^{\}rm g}{\rm in}$ NP: solvable by a Non-deterministic Turing machine (computer that can guess) in Polynomial time

Satisfiability of Boolean formulas (SAT)

$$(x_1 \wedge x_2) \vee (x_2 \wedge \neg x_3)$$

- Planning schedules
- Travelling Salesman

Real life applications for

- data base queries
- hardware/software verification

NP-complete problems

For all these problems:

- 1. Given a solution, its correctness can be checked efficiently (in NP).
- 2. No efficient general algorithm for finding a solutions is known (exponential time).
- 3. An efficient algorithm for **one problem** (e.g. $n^2 \times n^2$ Sudoku) would also solve **all others** efficiently (NP-hard).

P versus NP (Cook, 1971):

The most famous open question in computer science:

Is a problem for which solutions are easily verifiable also easily solvable?

1 million Dollar for the answer (Millenium Prize of the Clay Mathematical Institute).

P vs. NP (Cook, 1971):

The most famous open question in computer science (alternative formulation):

Are Sudokus harder than Rubik's cube?

1 million Dollar for the answer (Millenium Prize of the Clay Mathematical Institute).

Research at CU Boulder, Math Dept

At the foundations group (Bulin, Kearnes, Mayr, Steindl, Szendrei,...) we

- devise algorithms for computing efficiently with algebras other than groups,
- investigate the border between problems in P and NP-complete problems.