Math 3140 - Assignment 12

Due April 29, 2024

(1) Let c be an integer and let $\sqrt{c} \in \mathbb{C}$ such that $(\sqrt{c})^2 = c$. Show that

$$\mathbb{Z}[c] := \{a + b\sqrt{c} : a, b \in \mathbb{Z}\}\$$

is a subring of the field $(\mathbb{C}, +, \cdot)$.

Is $\mathbb{Z}[c]$ an integral domain? Is $\mathbb{Z}[c]$ a subfield of \mathbb{C} ?

 $\mathbb{Z}[i]$ for $i^2 = -1$ is called the ring of Gaussian integers.

(2) Let R be a finite commutative ring with 1. Show that every $a \in R \setminus \{0\}$ is either a unit or a zero divisor.

Find an infinite R for which this is not true.

Hint: Consider whether aR = R or not.

- (3) (a) Show that if an ideal I of a ring R contains a unit, then I=R.
 - (b) Conclude that the only ideals of a field F are 0 and F.
- (4) Let R be a commutative ring with 1, let $a_1, \ldots, a_n \in R$.
 - (a) Show that

$$(a_1, \dots, a_n) := \{r_1 a_1 + \dots + r_n a_n : r_1, \dots, r_n \in R\}$$

is an ideal of R.

- (b) Show that any ideal I of R that contains a_1, \ldots, a_n also contains (a_1, \ldots, a_n) . Thus (a_1, \ldots, a_n) is the smallest ideal containing a_1, \ldots, a_n .
- (5) Let I, J be ideals in a ring R. Show that their sum

$$I+J:=\{i+j\ :\ i\in I, j\in J\}$$

is an ideal of R.

Describe the sum of the ideals (12) and (18) in \mathbb{Z} as simply as possible.

- (6) Show that the following pairs of rings are not isomorphic.
 - (a) $2\mathbb{Z}$ and $3\mathbb{Z}$
 - (b) $\mathbb{R} \times \mathbb{R}$ and \mathbb{C}
 - (c) \mathbb{R} and \mathbb{C}
- (7) Show that $\mathbb{R}[x]/(f)$ for $f = x^2 + 1$ is isomorphic to the field of complex numbers \mathbb{C} .

Hint: Note that elements in the quotient ring are of the form a + bx + (f). What are the sum and the product of two such elements?