Math 3140 - Assignment 10

Due April 3, 2024

This assignment is a set of practice problems for the midterm exam on April 8.

(1) Let G, H be groups. Show that

$$Z(G \times H) = Z(G) \times Z(H).$$

- (2) (a) Describe all isomorphisms from \mathbb{Z}_{12} to $\mathbb{Z}_4 \times \mathbb{Z}_3$. How many are there?
 - (b) Show that every homomorphism from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z} is of the form $(x, y) \mapsto ax + by$ for some integers a, b.
- (3) Let N be a normal subgroup of G such that G/N is abelian. Show that $x^{-1}y^{-1}xy \in N$ for all $x, y \in G$.

The expression $x^{-1}y^{-1}xy$ is called the *commutator* of x and y and denoted by [x, y].

- (4) Let G' be the subgroup of G that is generated by the set of all commutators $\{[x,y]: x,y \in G\}$. Then G' is called the commutator subgroup or derived subgroup of G.
 - (a) Show that G' is normal in G.

Hint: Show that any conjugate of a commutator is a commutator.

- (b) Show that G/G' is abelian.
- (5) By (3) and (4) the commutator subgroup G' is the smallest normal subgroup N of G such that G/N is abelian.

Use this and what you know about normal subgroups of the following groups to determine G' for

- (a) G abelian,
- (b) S_3 ,
- (c) D_8

(d) A_4 .

- You do not need to compute any commutators [x, y] for this. (6) (a) Find all abelian groups of order 360 up to isomorphism.
 - (b) Which of these groups have exactly 3 elements of order 2?
- (7) (a) How many colorings are there of the faces of a cube in 2 colors up to rotational symmetry? (Two colorings are considered equivalent when one can be obtained from the other by rotating the cube.)
 - (b) How many ways can you label the faces of a die 1,..., 6 up to rotational symmetry?

Hint: recall the rotation group of the cube from [1, Thm 7.4].

References

[1] Joseph A. Gallian. Contemporary Abstract Algebra. Houghton Mifflin Company, sixth edition, 2006.