Math 3140 - Assignment 8

Due March 13, 2024

- (1) Determine all homomorphisms from G to H and their kernels. Which are surjective?
 - (a) $G = \mathbb{Z}_4$, $H = \mathbb{Z}_2 \times \mathbb{Z}_2$
 - (b) $G = H = \mathbb{Z}_n$
 - (c) $G = S_4$, $H = \mathbb{Z}_2$
 - (d) $G = \mathbb{Z}, H = S_3$

Hint: Consider where the generators of G can be mapped under homomorphisms. Use the First Isomorphism Theorem.

Solution. Recall that a homomorphism $\varphi \colon G \to H$ is uniquely determined by where φ sends the generators of G.

- (a) $\varphi_{00} \colon \mathbb{Z}_4 \to \mathbb{Z}_2 \times \mathbb{Z}_2$, $x \mapsto (0,0)$, has kernel \mathbb{Z}_4 . $\varphi_{10} \colon x \mapsto ([x]_2,0)$, $\varphi_{10} \colon x \mapsto (0,[x]_2)$,
 - $\varphi_{11} \colon x \mapsto ([x]_2, [x]_2), \text{ all have kernel } \mathbb{Z}_2.$

No homomorphism is surjective.

- (b) Every homomorphism is of the form $\varphi_a \colon \mathbb{Z}_n \to \mathbb{Z}_n$, $x \mapsto ax$, for $a \in \mathbb{Z}_n$, $\ker \varphi_a = \frac{n}{\gcd(a,n)} \mathbb{Z}_n$ and φ_a is surjective (bijective) iff $\gcd(a,n) = 1$
- (c) Let $\varphi: S_4 \to \mathbb{Z}_2$ be a homomorphism. Then $\varphi(S_4) \leq \mathbb{Z}_2$. Case $\varphi(S_4) = 0$, not surjective: Then $\ker \varphi(S_4) = S_4$ and φ is the constant 0-map. Case $\varphi(S_4) = \mathbb{Z}_2$, surjective: Then $\ker \varphi(S_4)$ is a normal subgroup of index 2 in S_4 . The only such subgroup is A_4 . So $\ker \varphi(S_4) = A_4$ and $\varphi(A_4) = 0$, $\varphi((12)A_4) = 1$.
- (d) Every homomorphism is of the form $\varphi_a \colon \mathbb{Z} \to S_3$ defined by $\varphi(1) = a \in S_3$. None of them are surjective since S_3 is not cyclic. If |a| = n, then $\ker \varphi_a = n\mathbb{Z}$.
- (2) For a subgroup H and a normal subgroup N of G show that

$$HN:=\{hn\ :\ h\in H, n\in N\}$$

is a subgroup of G.

Solution.

- $1 \in HN \neq \emptyset$.
- Let $h_1, h_2 \in H, n_1, n_2 \in N$. Since N is normal,

$$(h_1n_1)(h_2n_2) = h_1h_2(h_2^{-1}n_2h_2)n_2 \in HN.$$

- Let $h \in H, n \in N$. Then $(hn)^{-1} = n^{-1}h^{-1} = h^{-1}(hn^{-1}h^{-1}) \in HN$.
- (3) Characterization of direct products:
 - (a) Let $G = K \times N$ be an external direct product. Show that $K \times 1$ and $1 \times N$ are normal subgroups of G such that

$$(K \times 1) \cap (1 \times N) = 1$$
 and $(K \times 1)(1 \times N) = G$.

(b) Let G be a group with normal subgroups K, N such that

$$K \cap N = 1$$
 and $KN = G$.

Then G is called an **internal direct product** of K and N. Show that

$$G \cong K \times N$$
.

Hint: Show that $\varphi \colon K \times N \to G, (k, n) \mapsto kn$, is an isomorphism.

Solution.

- (a) $K \times 1 \subseteq G$ since $(x, y)^{-1}$ $K \times 1$ $(x, y) = x^{-1}Kx \times 1 = K \times 1$ for all $(x, y) \in G$. Similarly $1 \times N \subseteq G$. $(K \times 1) \cap (1 \times N) = 1$ and $(K \times 1)(1 \times N) = G$ are clear.
- (b) $\varphi \colon K \times N \to G, (k, n) \mapsto kn$, is
 - surjective by the assumption KN = G;
 - injective: for $(x_1, y_1), (x_2, y_2) \in K \times N$, $x_1y_1 = x_2y_2$ yields $x_2^{-1}x_1 = y_2y_1^{-1} \in K \cap N = 1$;
 - a homomorphism: for $(x_1, y_1), (x_2, y_2) \in K \times N$,

$$\varphi((x_1, y_1)(x_2, y_2)) = x_1 x_2 y_1 y_2$$

$$\varphi(x_1, y_1) \varphi(x_2, y_2) = x_1 y_1 x_2 y_2$$

are equal since any $x \in K$ commutes with any $y \in N$:

$$x^{-1} \underbrace{y^{-1} x y}_{\in K} = \underbrace{x^{-1} y^{-1} x}_{\in N} y \in K \cap N = 1.$$

(4) Correspondence Theorem between normal subgroups:

Let $\varphi \colon G \to H$ be an onto homomorphism. Show

- (a) If B is normal in H, then $\varphi^{-1}(B)$ is normal in G.
- (b) If A is normal in G, then $\varphi(A)$ is normal in H.

Solution. (a) Assume B is normal in H. Let $x \in \varphi^{-1}(B)$ and $g \in G$. To show $gxg^{-1} \in \varphi^{-1}(B)$ consider

$$\varphi(gxg^{-1}) = \varphi(g)\varphi(x)\varphi(g)^{-1}$$

which is in B because $\varphi(x)$ is in B and B is normal. Hence $\varphi^{-1}(B)$ is normal.

(b) is similar.

- (5) Are the following groups isomorphic?
 - (a) $\mathbb{Z}_4 \times \mathbb{Z}_4$ and $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
 - (b) $\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_6$ and $\mathbb{Z}_{60} \times \mathbb{Z}_6 \times \mathbb{Z}_2$
 - (c) $\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_6$ and $\mathbb{Z}_{15} \times \mathbb{Z}_4 \times \mathbb{Z}_{12}$

Solution (a) No, since the first has 3 elements of order 2 and the second 7 (or by the Fundamental Theorem of Finite Abelian Groups).

- (b) Yes, splitting into prime power factors shows that both are isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$.
- (c) No. The first splits into factors $\mathbb{Z}_4 \times \mathbb{Z}_2^2 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$, the second into $\mathbb{Z}_4^2 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$. By the Fundamental Theorem of Finite Abelian Groups these groups are not isomorphic.
- (6) How many abelian groups up to isomorphism are there of order
 - (a) 6,
 - (b) 15,
 - (c) 30,
 - (d) pq for distinct primes p, q
 - (e) n where n is a product of pairwise distinct primes?

Solution. A product of pairwise distinct primes means $n = p_1 p_2 \dots p_k$ for distinct primes p_1, \dots, p_k . By the Fundamental Theorem of Finitely Generated Abelian Groups every abelian group of that order is isomorphic to

$$\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \dots \mathbb{Z}_{p_k},$$

which is isomorphic to \mathbb{Z}_n since these factors all have coprime orders.

- (7) (a) Find all abelian groups of order 180 up to isomorphism.
 - (b) For a prime p prime, find all abelian groups of order p^5 up to isomorphism.

Solution. (a) Since $180 = 2^2 * 3^2 * 5$ and the exponent 2 has only 2 partitions, we have 4 options:

$$\mathbb{Z}_2^2 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

$$\mathbb{Z}_4 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

$$\mathbb{Z}_2^2 \times \mathbb{Z}_9 \times \mathbb{Z}_5$$

$$\mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5$$

(b)

partitions of 5	groups
5	\mathbb{Z}_{p^5}
4 + 1	$\mathbb{Z}_{p^4} \times \mathbb{Z}_p$
3 + 2	$\mathbb{Z}_{p^3} imes \mathbb{Z}_{p^2}$
3 + 1 + 1	$\mathbb{Z}_{p^3} imes \mathbb{Z}_p imes \mathbb{Z}_p$
2 + 2 + 1	$\mathbb{Z}_{p^2} imes \mathbb{Z}_{p^2} imes \mathbb{Z}_p$
2+1+1+1	$\mathbb{Z}_{p^2} \times \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$
1+1+1+1+1	\mathbb{Z}_n^5