Math 3140 - Assignment 7

Due March 6, 2024

(1) For a group G and $x, y \in G$ say x is **conjugate** to y in G if $\exists q \in G : y = qxq^{-1}.$

Show that conjugacy is an equivalence relation.

Its equivalence classes are called the **conjugacy classes** of G.

- (2) (a) Show that a subgroup N of G is normal iff N is a union of conjugacy classes of G.
 - (b) Which conjugacy classes are contained in the center Z(G)?
- (3) Use (2) to determine all normal subgroups of S_3 .
 - (a) What is $Z(S_3)$?
 - (b) Describe the quotient groups S_3/N for these normal subgroups up to isomorphism as simple as possible.
- (4) Show that every subgroup H of index 2 in a group G is normal. Hint: Look at the partition of G into cosets of H.
- (5) Let N be a normal subgroup of G. Show
 - (a) If G is abelian, then G/N is abelian.
 - (b) If G is cyclic, then G/N is cyclic.
 - (c) Give a nonabelian group G with G/N and N abelian.
- (6) Determine the orders of the following quotient groups and whether they are cyclic.
 - (a) $\mathbb{Z}/\langle 10 \rangle$
 - (b) $\mathbb{Z}_{12}/\langle 6 \rangle$
 - (c) $\mathbb{Z} \times \mathbb{Z}/\langle (2,3) \rangle$
 - (d) $\mathbb{Z}_4 \times \mathbb{Z}_6 / \langle (2,2) \rangle$
- (7) Show that $\pi: G \times H \to G$, $(g,h) \to g$ is a homomorphism.

Determine its kernel and image.

Show that $G \times H/\{1\} \times H \cong G$.

- (8) Determine the kernels and images of the following homomorphisms. Which are injective, surjective?
 - (a) $\varphi \colon \mathbb{Z}_6 \to \mathbb{Z}_6, \ x \mapsto 4x$
 - (b) $\psi \colon \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 1 & -3 \\ -2 & 6 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$ for the additive group \mathbb{R}^2 .

(c) $h: \mathbb{C}^* \to \mathbb{C}^*, x \mapsto x^2$, where \mathbb{C}^* denotes the multiplicative group of the complex numbers without 0.