Math 3140 - Assignment 6

Due February 28, 2024

(1) Let G be a finite group with subgroups $H \leq K \leq G$. Show that

$$|G:H| = |G:K| \cdot |K:H|.$$

Solution. Recall that $|G:H| = \frac{|G|}{|H|}$, etc. So

$$|G:K| \cdot |K:H| = \frac{|G|}{|K|} \cdot \frac{|K|}{|H|} = \frac{|G|}{|H|} = |G:H|.$$

(2) For groups (G, \cdot_G) and (H, \cdot_H) show that the direct product

$$G \times H := \{(g, h) : g \in G, h \in H\}$$

under the operation

$$(g_1, h_1) \cdot (g_2, h_2) := (g_1 \cdot_G g_2, h_1 \cdot_H h_2)$$

for $g_1, g_2 \in G, h_1, h_2 \in H$ is a group.

Solution.

- (a) Clearly \cdot is a function from $(G \times H)^2$ to $G \times H$.
- (b) \cdot inherits associativity from the multiplications on G and on H.
- (c) $(1_G, 1_H)$ is the identity of $G \times H$ where $1_G, 1_H$ is the identity of G, H, respectively.
- (d) Any $(g,h) \in G \times H$ has an inverse $(g,h)^{-1} = (g^{-1},h^{-1})$.
- (3) Give an isomorphism between the following pairs of groups or explain why they are not isomorphic.
 - (a) $\mathbb{Z}_8 \times \mathbb{Z}_2$, $\mathbb{Z}_4 \times \mathbb{Z}_4$
 - (b) \mathbb{Z}_{12} , $\mathbb{Z}_4 \times \mathbb{Z}_3$
 - (c) \mathbb{Z}_{12}^* , $\mathbb{Z}_4^* \times \mathbb{Z}_3^*$
 - (d) $Z_4 \times \mathbb{Z}_2$, D_8

Solution.

- (a) $\mathbb{Z}_8 \times \mathbb{Z}_2 \not\cong \mathbb{Z}_4 \times \mathbb{Z}_4$ since $(1,0) \in \mathbb{Z}_8 \times \mathbb{Z}_2$ has order 8 but all elements of $\mathbb{Z}_4 \times \mathbb{Z}_4$ have order dividing 4
- (b) $\mathbb{Z}_{12} \to \mathbb{Z}_4 \times \mathbb{Z}_3$, $[x]_{12} \mapsto ([x]_3, [x]_4)$ is an isomorphism.
- (c) $\mathbb{Z}_{12}^* \to \mathbb{Z}_4^* \times \mathbb{Z}_3^*$, $[x]_{12} \mapsto ([x]_3, [x]_4)$ is an isomorphism.
- (d) $Z_4 \times \mathbb{Z}_2 \ncong D_8$ since the first is abelian, the second not

- (4) Give an isomorphism between the following pairs of groups or explain why they are not isomorphic.
 - (a) $G \times H$, $H \times G$
 - (b) \mathbb{C} , $\mathbb{R} \times \mathbb{R}$ under addition
 - (c) \mathbb{C}^* , $\mathbb{R}^* \times \mathbb{R}^*$ under multiplication
 - (d) $\mathbb{Z} \times \mathbb{Z}$, $(\{2^x 3^y : x, y \in \mathbb{Z}\}, \cdot)$

Solution.

- (a) $G \times H \times H \times G$, $(g,h) \mapsto (h,g)$, is an isomorphism.
- (b) $\mathbb{C} \to \mathbb{R} \times \mathbb{R}$, $a + bi \mapsto (a, b)$, is an isomorphism since addition of complex numbers is componentwise.
- (c) $\mathbb{C}^* \ncong \mathbb{R}^* \times \mathbb{R}^*$ since e.g. -1 is the unique element of order 2 in \mathbb{C}^* but (-1,1),(1,-1),(-1,-1) all have order 2 in $\mathbb{R}^* \times \mathbb{R}^*$
- (d) $\mathbb{Z} \times \mathbb{Z} \to (\{2^x 3^y : x, y \in \mathbb{Z}\}, \cdot), (x, y) \mapsto 2^x 3^y$, is an isomorphism.
- (5) Note that $1 \times H$ is a subgroup of $G \times H$. Find all the left cosets of $1 \times H$ in $G \times H$. Give one representative for each left coset. How many are there?

Solution. Every left coset of $1 \times H$ in $G \times H$ is of the form $\{g\} \times H$ for $g \in G$.

So (g,1) for $g \in G$ is a set of representatives through all cosets. There are as many as elements in G.

(6) Let p be a prime. Show that $\mathbb{Z}_p \times \mathbb{Z}_p$ has exactly p+1 subgroups of order p.

Solution. Every nonzero element in $\mathbb{Z}_p \times \mathbb{Z}_p$ has order p. So there are $p^2 - 1$ elements of order p, each of which generates a subgroup of order p. However any subgroup of order p has p-1 distinct generators. So the number of distinct subgroups of order p is $\frac{p^2-1}{p-1} = p+1$.

(7) Let p, q be odd primes and let $m, n \in \mathbb{N}$. Show that $\mathbb{Z}_{p^m}^* \times \mathbb{Z}_{q^n}^*$ is not cyclic.

Hint: Note that a cyclic group has at most one element of order 2. Why?

Solution. An infinite cyclic group has no element of order 2. By a Theorem from class \mathbb{Z}_k has a subgroup H of order 2 iff k is even. Then $H = \langle \frac{k}{2} \rangle$, in particular, $\frac{k}{2}$ is the only element of order 2.

For p, q odd primes, note that (-1, 1), (1, -1), (-1, -1) are 3 distinct elements in $\mathbb{Z}_{p^m}^* \times \mathbb{Z}_{q^n}^*$ of order 2. Hence that group cannot be cyclic.