Math 3140 - Assignment 4

Due February 14, 2024

(1) Let \mathbb{C} be the set of complex numbers and

$$M = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}.$$

Show that $(\mathbb{C}, +) \cong (M, +)$ and $(\mathbb{C} \setminus \{0\}, \cdot) \cong (M \setminus \{0\}, \cdot)$.

Solution: We need to define the isomorphisms.

$$\varphi \colon \mathbb{C} \to M, \ a + ib \mapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

is clearly bijective.

(a) Check $\varphi([a+ib]+[c+id])=\varphi(a+ib)+\varphi(c+id)$ for all $a + ib, c + id \in \mathbb{C}$.

Hence $\varphi \colon (\mathbb{C},+) \to (M,+)$ is an isomorphism.

(b) Check $\varphi([a+ib]\cdot[c+id]) = \varphi(a+ib)\cdot\varphi(c+id)$ for all $a + ib, c + id \in \mathbb{C}$.

Hence $\varphi \colon (\mathbb{C} \setminus \{0\}, \cdot) \to (M \setminus \{0\}, \cdot)$ is an isomorphism. \square

(2) Let G be a group. Show that AutG is group a under composition of functions.

Solution: Check the definition of a group:

- (a) Aut $G \neq \emptyset$ since the identity map id is in AutG.
- (b) Composition is an operation on Aut G since the composition of homomorphisms is a homomorphism and the composition of bijections is a bijection again.
- (c) Composition of function is associative (recall from Discrete Math, Calculus).
- (d) There is an identity element: $id \circ \varphi = \varphi \circ id = \varphi$ for all $\varphi \in \operatorname{Aut}G$.

(e) Every $\varphi \in \operatorname{Aut}G$ has an inverse $\varphi^{-1} \in \operatorname{Aut}G$.

Hence (Aut G, \circ) is a group.

(3) For a group G and $g \in G$, define the inner automorphism

$$\varphi_g \colon G \to G, \ x \mapsto gxg^{-1}.$$

Show

- (a) $\varphi_g \in \text{Aut}G$.
- (b) $\Phi: G \to \operatorname{Aut}G, \ g \mapsto \varphi_g$, is a homomorphism.

(c)
$$\ker \Phi = Z(G)$$
.

Solution: (a) φ_g is a homomorphism since for $x, y \in G$

$$\varphi_g(xy) = gxyx^{-1} = gxg^{-1}gyx^{-1} = \varphi_g(x)\varphi_g(y).$$

 φ_g is bijective since it has an inverse $\varphi_g^{-1} = \varphi_{g^{-1}}$. Thus $\varphi_g \in \text{Aut}G$.

- (b) Φ is a homomorphism since for $g, h \in G$ $\Phi(gh) = \varphi_{gh} \text{ maps } x \mapsto ghx(gh)^{-1},$ $\Phi(x)\Phi(h) = \varphi_{gh} \text{ maps } x \mapsto ghx(gh)^{-1},$
- $\Phi(g)\Phi(h) = \varphi_g \circ \varphi_h \text{ maps } x \mapsto \varphi_g(\varphi_h(x)) = ghx(gh)^{-1}.$ Hence $\Phi(gh) = \Phi(g)\Phi(h).$

(c)

$$g \in \ker \Phi \text{ iff } \varphi_g = \mathrm{id}$$

 $\mathrm{iff } gxg^{-1} = x \quad \forall x \in G$
 $\mathrm{iff } g \in Z(G).$

 \square (4) Let $D_8 = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\}$ be the dihedral group of

- order 8 generated by a rotation a and a reflection b. (a) When are $\varphi_g = \varphi_h$ for $g, h \in D_8$?
- (b) What is the order of $Inn D_8$?
- (c) List all distinct elements in $Inn D_8$.

Solution: (a) For any group G and $g, h \in G$:

$$\varphi_g = \varphi_h \text{ iff } \varphi_g(x) = \varphi_h(x) \quad \forall x \in G$$

$$\text{iff } gxg^{-1} = hxh^{-1} \quad \forall x \in G$$

$$\text{iff } xg^{-1}h = g^{-1}hx \quad \forall x \in G$$

$$\text{iff } g^{-1}h \in Z(G)$$

$$\text{iff } gZ(G) = hZ(G).$$

Hence g, h give the same inner automorphism iff they are in the same left coset of the center of G.

(b) By (a)

$$|\mathrm{Inn}G| = \frac{|G|}{|Z(G)|}.$$

Since $Z(D_8) = \{1, a^2\}$, we get $|\text{Inn}D_8| = 4$.

(b) By (a) we need to pick one representative from each coset of the center to get all distinct elements in InnG. So

$$Inn D_8 = \{ \varphi_1 = \varphi_{a^2}, \ \varphi_a = \varphi_{a^3}, \ \varphi_b = \varphi_{a^2b}, \ \varphi_{ab} = \varphi_{a^3b} \}.$$

(5) Show that $|\operatorname{Aut} D_8| \leq 8$.

Hint: Explain why an automorphism is uniquely determined by what it does to the generators a and b. Where could these be mapped to?

Solution: Recall that D_8 is generated by a rotation a (order 4) and a reflection b (order 2),

$$D_8 = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\}.$$

If a homomorphism $\varphi \colon D_8 \to H$ satisfies $\varphi(a) = u$ and $\varphi(b) = v$, then the homomorphism property yields that $\varphi(a^i b^j) = u^i v^j$. Hence φ is uniquely determined on the whole group by what it does to its generators.

Now let $\varphi \in \operatorname{Aut} D_8$. Isomorphisms preserve the order of elements and map generators to generators. Since $\varphi(a)$ has order 4, it can only be a or a^3 . Further $\varphi(b)$ has order 2, so could be a^2, b, ab, a^2b, a^3b . But $\varphi(b) = a^2$ is not possible since then $\langle \varphi(a), \varphi(b) \rangle = \langle a \rangle \neq D_8$. So it only remains that $\varphi(b) \in \{b, ab, a^2b, a^3b\}$.

Summing up there are 2 choices for $\varphi(a)$ and 4 choices for $\varphi(b)$. Hence at most 8 automorphism. (Note: It's not clear from this argument that every choice really yields an automorphism but it does.)

(6) Find non-isomorphic groups G, H such that $AutG \cong AutH$.

Solution: We classified $\operatorname{Aut}\mathbb{Z}_n$ in class. So consider $\operatorname{Aut}\mathbb{Z}_3 \cong (\mathbb{Z}_3^*, \cdot) = (\{1, 2\}, \cdot)$ $\operatorname{Aut}\mathbb{Z}_4 \cong (\mathbb{Z}_4^*, \cdot) = (\{1, 3\}, \cdot)$

Both groups have order 2, hence are isomorphic to $(\mathbb{Z}_2, +)$.

- (7) For the following subgroups H of G, find all the left cosets of H in G. Give one representative for each left coset. How many are there?
 - (a) $G = \mathbb{R}^2$ under addition, $H = \{(x, 0) : x \in \mathbb{R}\}$

Solution: H is the x-axis.

Translating H by $(a, b) \in \mathbb{R}^2$ yields the left coset

$$(a,b) + H = \{(x,b) : x \in \mathbb{R}\}.$$

Note this is just a parallel to the x-axis for y = b.

There are infinitely many such left cosets, all of the form (0,b)+H for some $b \in \mathbb{R}$. E.g. (0,b) is a representative for (0,b)+H.

(b) $G = \langle a \rangle$ of order 12, $H = \langle a^4 \rangle$

Solution:
$$G = \langle a \rangle = \{1, a, a^2, \dots, a^{11}\}$$

 $H = \langle a^4 \rangle = \{1, a^4, a^8\}$

Translating H by elements from G yields

$$H = \{1, a^4, a^8\}$$

$$aH = \{a, a^5, a^9\}$$

$$a^2H = \{a^2, a^6, a^{10}\}$$

$$a^3H = \{a^3, a^7, a^{11}\}$$

Note that the union of these 4 cosets is G. Hence we have found all cosets. Representatives are e.g. $1, a, a^2, a^3$, resp.

(c) $G = \mathbb{R}^*$ under multiplication, $H = \mathbb{R}^+$ the subgroup of positive reals

Solution: Translating \mathbb{R}^+ by elements from \mathbb{R}^* yields \mathbb{R}^+ and $(-1)\mathbb{R}^+ = R^-$ (the set of negative reals). Since $\mathbb{R} = \mathbb{R}^+ \cup \mathbb{R}^-$ we have found all cosets already. Representatives are e.g. 1, -1.

(8) For any integer n > 1, Euler's ϕ -function $\phi(n)$ yields the number of positive integers less than n that are coprime to n. Prove:

Euler's Theorem. If a is coprime to n, then $a^{\phi(n)} \equiv 1 \mod n$.

Solution: Recall that \mathbb{Z}_n^* is the set of elements in \mathbb{Z}_n that have a multiplicative inverse, i.e. $\mathbb{Z}_n^* = \{[a] : \gcd(a,n) = 1\}$. In particular $|\mathbb{Z}_n^*| = \phi(n)$.

Assume a is coprime to n. Then $[a] \in \mathbb{Z}_n^*$ and Lagrange's Theorem yields $[a]^{|\mathbb{Z}_n^*|} = [1]$. Equivalently $a^{\phi(n)} \equiv 1 \mod n$. \square