Math 3140 - Assignment 3

Due February 7, 2024

(1) For permutations
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{pmatrix}$ compute

$$\alpha^{-1}, \alpha\beta, \beta\alpha$$

and their orders.

(2) Find all subgroups of S_3 , give generators for each and show their inclusions in a subgroup lattice.

Hint: First find all cyclic subgroups. Then all subgroups that need two generators, etc.

Solution: trivial subgroup: 1 cyclic subgroups:
$$\langle (12) \rangle$$
 $\langle (13) \rangle$ $\langle (23) \rangle$ $\langle (123) \rangle$ any 2 distinct non-identity permutations generate S_3

(3) Show that a cycle of length ℓ can be written as a product of $\ell-1$ transpositions,

$$(a_1 \ a_2 \ \dots a_\ell) = (a_1 \ a_\ell)(a_1 a_{\ell-1}) \dots (a_1 a_2).$$

Solution: Note that the functions on each side map

$$a_1 \mapsto a_2$$

$$a_2 \mapsto a_3$$

$$\vdots$$

$$a_\ell \mapsto a_1$$

and fix all other points. Hence they are equal.

(4) Show that $Z(S_n) = 1$ for $n \ge 3$.

Solution: \supseteq : Clearly the identity () commutes with all elements in S_n , hence is in its center.

 \subseteq : Let $\alpha \in S_n$ such that $\alpha \neq ()$. Show that there is some $\beta \in S_n$ such that $\alpha\beta \neq \beta\alpha$. For that β needs to move the same points as α but differently.

Since $\alpha \neq ()$, we have $x \in \{1, ..., n\}$ such that $\alpha(x) \neq x$. Let $y \in \{1, ..., n\}$ be distinct from x and $\alpha(x)$. Such y exists since $n \geq 3$. Let $\beta := (x, y)$.

Then $\alpha\beta(x) = \alpha(y)$ and $\beta\alpha(x) = \alpha(x)$. Note $\alpha(x) \neq \alpha(y)$ since $x \neq y$. So $\alpha\beta \neq \beta\alpha$ and $\alpha \notin Z(S_n)$. Thus $Z(S_n) \subseteq 1$. \square

- (5) Let $\varphi \colon G \to H$ be a homomorphism between the group (G,\cdot) with identity 1_G and the group (H, *) with identity 1_H . Show:
 - (a) $\varphi(1_G) = 1_H$.

Hint: Start by evaluating $\varphi(1_G \cdot 1_G)$ in two ways.

(b) $\varphi(g^{-1}) = \varphi(g)^{-1}$ for all $g \in G$. Hint: Use (a).

Solution: (a)

$$\varphi(1_G) = \varphi(1_G \cdot 1_G) = \varphi(1_G) * \varphi(1_G)$$

- Multiply by $\varphi(1_G)^{-1}$ in H to get $1_H = \varphi(1_G)$. (b) $\varphi(g^{-1}) \cdot \varphi(g) = \varphi(g^{-1}g) = \varphi(1_G) = 1_H$ by (a) yields that $\varphi(g^{-1})$ is the inverse of $\varphi(g)$.
- (6) Let G, H be groups and $\varphi \colon G \to H$ a homomorphism. Show (a) The image of φ ,

$$\varphi(G) := \{ \varphi(g) : g \in G \}$$

is a subgroup of H.

(b) The kernel of φ ,

$$\ker \varphi := \{ g \in G : \varphi(g) = 1 \}$$

is a subgroup of G.

Recall image and kernel of linear maps on vector spaces.

Solution: (a) Show that $\varphi(G)$ is closed under multiplication and inverses:

Let $a, b \in \varphi(G)$. Then we have $x, y \in G$ such that a = $\varphi(x), b = \varphi(y)$. Now

$$ab = \varphi(x)\varphi(y) = \varphi(xy) \in \varphi(G),$$

$$a^{-1} = \varphi(x^{-1}) \in \varphi(G)$$
 by (5a).

(b) Show that $\ker \varphi$ is closed under multiplication and in-

Let $x, y \in \ker \varphi$. Then $\varphi(x) = \varphi(y) = 1_H$ and

$$\varphi(xy) = \varphi(x)\varphi(y) = 1_H$$
 yields $xy \in \ker \varphi$

$$x^{-1} \in \ker \varphi \text{ since by (5b) } \varphi(x^{-1}) = \varphi(x)^{-1} = 1_H.$$

(7) Let G be a group. Show that

$$\varphi \colon G \to G, \ x \mapsto x^{-1},$$

is an automorphism iff G is abelian.

Solution: Note that φ is its own inverse since $\varphi(\varphi(x)) = x$. Hence φ is always bijective.

First assume G is commutative. Let $x, y \in G$. Then

$$\varphi(xy) = (xy)^{-1} = y^{-1}x^{-1} = x^{-1}y^{-1} = \varphi(x)\varphi(y),$$

shows that φ is a homomorphism.

Conversely assume φ is a homomorphism. Then $\varphi(x)\varphi(y) = \varphi(xy)$, which means

$$x^{-1}y^{-1} = (xy)^{-1} = y^{-1}x^{-1}$$
.

Multiplying with x, y in the correct order yields xy = yx and G is commutative. \square

- (8) Are the groups G and H isomorphic? If no, explain why not. If yes, give an explicit isomorphism $\varphi \colon G \to H$:
 - (a) $G = (\mathbb{Z}, +), H = (2\mathbb{Z}, +)$
 - (b) $G = (\mathbb{Z}_6, +), H = (\mathbb{Z}_7^*, \cdot).$
 - (c) G the symmetry group of a rectangle, $H = (\mathbb{Z}_4, +)$
 - (d) $G = S_3$, $H = \mathbb{Z}_6$

Solution:

- (a) \mathbb{Z} is infinite cyclic with generator 1, $2\mathbb{Z}$ is infinite cyclic with generator 2. So $\varphi \colon G \to H, \ x \mapsto 2x$, is an isomorphism.
- (b) $G = (\mathbb{Z}_6, +)$ is cyclic of order 6 with generator $[1]_6$ and $H = (\mathbb{Z}_7^*, \cdot)$ is cyclic of order 6 with generator $[3]_7$. So $\varphi \colon G \to H$, $[x]_6 \mapsto [3]_7^x$, is an isomorphism.
- (c) Recall that G contains 3 flips of the rectangle of order 2. Hence G is not cyclic and cannot be isomorphic to \mathbb{Z}_4 .
- (d) S_3 is non-abelian and cannot be isomorphic to the abelian group \mathbb{Z}_6 .