Math 3140 - Assignment 3

Due February 7, 2024

(1) For permutations $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{pmatrix}$, $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{pmatrix}$ compute

$$\alpha^{-1}, \alpha\beta, \beta\alpha$$

and their orders.

(2) Find all subgroups of S_3 , give generators for each and show their inclusions in a subgroup lattice.

Hint: First find all cyclic subgroups. Then all subgroups that need two generators, etc.

(3) Show that a cycle of length ℓ can be written as a product of $\ell-1$ transpositions,

$$(a_1 \ a_2 \ \dots a_\ell) = (a_1 \ a_\ell)(a_1 a_{\ell-1}) \dots (a_1 a_2).$$

- (4) Show that $Z(S_n) = 1$ for $n \ge 3$.
- (5) Let $\varphi \colon G \to H$ be a homomorphism between the group (G, \cdot) with identity 1_G and the group (H, *) with identity 1_H . Show:
 - (a) $\varphi(1_G) = 1_H$.

Hint: Start by evaluating $\varphi(1_G \cdot 1_G)$ in two ways.

- (b) $\varphi(g^{-1}) = \varphi(g)^{-1}$ for all $g \in G$. Hint: Use (a).
- (6) Let G, H be groups and $\varphi \colon G \to H$ a homomorphism. Show
 - (a) The image of φ ,

$$\varphi(G) := \{ \varphi(g) : g \in G \}$$

is a subgroup of H.

(b) The kernel of φ ,

$$\ker\varphi:=\{g\in G\ :\ \varphi(g)=1\}$$

is a subgroup of G.

Recall image and kernel of linear maps on vector spaces.

(7) Let G be a group. Show that

$$\varphi \colon G \to G, \ x \mapsto x^{-1},$$

is an automorphism iff G is abelian.

- (8) Are the groups G and H isomorphic? If no, explain why not. If yes, give an explicit isomorphism $\varphi \colon G \to H$:
 - (a) $G = (\mathbb{Z}, +), H = (2\mathbb{Z}, +)$
 - (b) $G = (\mathbb{Z}_6, +), H = (\mathbb{Z}_7^*, \cdot).$
 - (c) G the symmetry group of a rectangle, $H = (\mathbb{Z}_4, +)$
 - (d) $G = S_3$, $H = \mathbb{Z}_6$