Math 3140 - Assignment 2

Due January 31, 2024

(1) Use the Euclidean algorithm to find $\gcd(a,b)$ and Bezout's coefficients $u,v\in\mathbb{Z}$ such that

$$u \cdot a + v \cdot b = \gcd(a, b)$$

for a = 51, b = 36.

- (2) Compute the following multiplicative inverses in \mathbb{Z}_n if possible:
 - (a) $[12]^{-1}$ in \mathbb{Z}_{35}
 - (b) $[14]^{-1}$ in \mathbb{Z}_{35}

Hint: Use the Euclidean Algorithm to compute Bezout's coefficients.

(3) For $n \in \mathbb{N}$, let \mathbb{Z}_n^* denote the set of elements in \mathbb{Z}_n that have a multiplicative inverse. Show that (\mathbb{Z}_n^*, \cdot) is a group.

Hint: Don't forget to show that \cdot is an operation on \mathbb{Z}_n^* , i.e., that the product of invertible elements is invertible again.

- (4) Let A, B be subgroups of a group (G, \cdot) . Show that $A \cap B$ is a subgroup as well.
- (5) Determine the center of $GL(2, \mathbb{R})$.

Hint: Let E_{ij} be the 2×2 matrix whose ij-entry is 1 and all other entries are 0. This is not invertible but their sum with the identity matrix $I + E_{ij}$ is.

Note that $A(I + E_{ij}) = (I + E_{ij})A$ iff $AE_{ij} = E_{ij}A$. Check the latter equations to determine conditions on a, b, c, d such that

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Z(GL(2, \mathbb{R})).$$

- (6) Prove that every group of even order has an element of order 2.
- (7) Which of the following groups are cyclic? For those that are, list all their generators. For those that are not, explain why.

$$A = (\mathbb{Q}, +)$$

$$B = (\mathbb{Z}_{12}, +)$$

$$C = (\mathbb{Z}_7^*, \cdot)$$

 $D = \{\pi^{z} : z \in \mathbb{Z}\}$ under multiplication

$$E = \mathbb{Z}^2 = \{(a, b) : a, b \in \mathbb{Z}\}$$
 under addition

(8) How many subgroups does $(\mathbb{Z}_{20}, +)$ have? List a generator for each subgroup. Draw a diagram showing the containments between the subgroups.