

Math 2135 - Practice Final

(1) Let $B = \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix}\right)$.

- Why is B a basis of \mathbb{R}^2 ?
- Give change of coordinates matrices $P_{E \leftarrow B}$ (for changing B -coordinates into coordinates w.r.t. the standard basis E) and $P_{B \leftarrow E}$.
- Compute the coordinates $[x]_B$ for $x = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

(2) Let $B = (b_1, b_2)$ as in the previous problem. Let $h: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be linear such that $[h(b_1)]_E = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $[h(b_2)]_E = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- Give the standard matrix $T_{E \leftarrow E}$ of h w.r.t. the standard basis.
- Compute $h\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$.

(3) Let

$$A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 0 & 1 \\ 3 & -2 & 2 \end{bmatrix}$$

- Is the mapping $h: \mathbb{R}^3 \rightarrow \mathbb{R}^3$, $x \mapsto Ax$, injective, surjective, bijective?
- Give bases for null space, row space, column space of A .

(4) Let A be the standard matrix for the rotation r of \mathbb{R}^2 by angle φ counterclockwise around the origin. What are the eigenvalues and eigenvectors of A ? Can A be diagonalized over the reals?

(5) Diagonalize A if possible. Also compute $\det A$. Is A invertible?

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & 3 \\ 0 & 0 & -2 \end{bmatrix}$$

(6) Compute the inverse if possible:

$$A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$

(7) Let $h: V \rightarrow W$ be a linear map, let $v_1, \dots, v_k \in V$ such that $h(v_1), \dots, h(v_k)$ are linearly independent. Show that v_1, \dots, v_k are linearly independent.