

Math 2135 - Assignment 13

Due December 5, 2025

(1) (a) Give 3 vectors of length 1 in \mathbb{R}^3 that are orthogonal to $u = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
 (b) Which of the following sets are orthogonal? Orthonormal?

$$A = \left\{ \begin{bmatrix} 0.6 \\ 0.8 \\ 0.8 \end{bmatrix}, \begin{bmatrix} 0.8 \\ -0.6 \\ -0.6 \end{bmatrix} \right\}, \quad B = \left\{ \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \frac{1}{\sqrt{18}} \begin{bmatrix} 4 \\ 1 \\ -1 \end{bmatrix} \right\}$$

(2) (a) Let W be the subspace of \mathbb{R}^3 with orthonormal basis $B = (\frac{1}{3} \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}, \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix})$. Compute the coordinates $[x]_B$ for $x = \begin{bmatrix} 7 \\ 4 \\ 4 \end{bmatrix}$ in W using dot products.
 (b) Give a basis for W^\perp .
 (c) Find the closest point to $y = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ in W . What is the distance from y to W ?
 (3) True or false. Explain your answers.
 (a) Every orthogonal set is also orthonormal.
 (b) Not every orthonormal set in \mathbb{R}^n is linearly independent.
 (c) For each x and each subspace W , the vector $x - \text{proj}_W(x)$ is orthogonal to W .
 (4) Let W be a subset of \mathbb{R}^n . Show that its orthogonal complement

$$W^\perp := \{x \in \mathbb{R}^n \mid x \text{ is orthogonal to all } w \in W\}$$

is a subspace of \mathbb{R}^n .

(5) Let W be a subspace of \mathbb{R}^n . Show that

(a) $W \cap W^\perp = \{0\}$
 (b) $\dim W + \dim W^\perp = n$

Hint: Let w_1, \dots, w_k be a basis of W . Use that $x \in W^\perp$ iff x is orthogonal to w_1, \dots, w_k .

(6) Find the least squares solutions of $Ax = b$.

$$(a) A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}$$

$$(b) A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 2 \\ -3 \\ 4 \end{bmatrix}$$

(7) True or false for $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Explain your answers.

(a) A least squares solution of $Ax = b$ is an \hat{x} such that $A\hat{x}$ is as close as possible to b .
 (b) A least squares solution of $Ax = b$ is an \hat{x} such that $A\hat{x} = \hat{b}$ for \hat{b} the orthogonal projection of b onto $\text{Col } A$.
 (c) The point in $\text{Col } A$ closest to b is a least squares solution of $Ax = b$.
 (d) If $Ax = b$ is consistent, then every solution x is a least squares solution.