
Math 2135 - Assignment 12
Due Nov 21, 2024

(1) Are the matrices A, B, C, D in (4), (5), (6) of assignment 11 diagonalizable? How?
Solution:
A is not diagonalizable because its eigenvalue −3 has multiplicity 2 but the corre-
sponding eigenspace only dimension 1.
B is diagonalizable because it has 3 distinct eigenvalues, so

B = P

2 0 0
0 0 0
0 0 3

 P−1 for P =

2 0 0
1 1 0
2 0 1


C is diagonalizable because it has 2 distinct eigenvalues, so

C = P

[
1 +

√
6 0

0 1 −
√

6

]
P−1 for P =

[
2 −2√
6

√
6

]

D is not diagonalizable because its eigenvalue −3 has multiplicity 2 but the corre-
sponding eigenspace only dimension 1. □

(2) Let A be an n × n-matrix. Are the following true or false? Explain why:
(a) If A has n eigenvectors, then A is diagonalizable.
(b) If a 4 × 4-matrix A has two eigenvalues with eigenspaces of dimension 3 and 1,

respectively, then A is diagonalizable.
(c) A is diagonalizable iff A has n eigenvalues (counting multiplicities).
(d) If Rn has a basis of eigenvectors of A, then A is diagonalizable.
(e) Every triangular matrix is diagonalizable.

Solution:
(a) False. You need n linearly independent eigenvectors.
(b) True.
(c) False. See example A in the previous problem.
(d) True. A basis of Rn of eigenvectors consists of n linearly independent eigenvectors.
(e) False. See example A in the previous problem. □

(3) Let A be the standard matrix for the reflection t of R2 on some line g throught the
origin. What are the eigenvalues, eigenvectors and eigenspaces of A? Can A be
diagonalized?
Hint: Consider what a reflection does to specific vectors.
Solution:
Let v1 be a non-zero vector on the line g, that is, v1 spans g. Then t(v1) = Av1 = v1.
Hence v1 is an eigenvector for A (equivalently for t) with eigenvalue 1.

Let vw be a non-zero vector orhogonal to g. Then t(v2) = Av2 = −v2. Hence v2 is
an eigenvector for A (equivalently for t) with eigenvalue −1.

Since A is a 2 × 2-matrix and has at most 2 eigenvalues we found all of them. Since
v1 and v2 are non-zero and orthogonal, they form a basis B = (v1, v2) of R2. For P
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the matrix with columns v1, v2, we then have

A = P ·
[
1 0
0 −1

]
· P−1.

Note that P is the change of coordinates matrix [id]B,E and [t]B←B =
[
1 0
0 −1

]
. So

that’s exactly how we computed [t]E←E = A earlier. □

(4) As the previous problem for a rotation r of R2 by an angle φ around the origin.
Hint: Consider φ = 0, π separately.
Solution:
For φ = 0 the rotation is just the identity map. The standard matrix is the identity
matrix and already diagonalized. So every non-zero vector in R2 is an eigenvector for
eigenvalue 1, eigenspace E1 = R2.

For φ = π the rotation is just scaling every vector by −1. The standard matrix is
the negative of the identity matrix and already diagonalized. So every non-zero vector
in R2 is an eigenvector for eigenvalue −1, eigenspace E−1 = R2.

Else rotating a non-zero vector x by φ ̸= 0, π does not give a real scalar multiple of
x. Hence r has no real eigenvalues and no real eigenvectors; r cannot be diagonalized
over the reals. Note that the characteristic polynomial of the standard matrix[

cos φ − sin φ
sin φ cos φ

]

is λ2 − 2 cos φλ + 1 and has complex roots cos φ ± i sin φ. It follows that r can be
diagonalized over the complex numbers. □

(5) Consider a population of owls feeding on a population of squirrels. In month k, let ok

denote the number of owls and sk the number of squirrels. Assume that the populations
change every month as follows:

ok+1 = 0.3ok + 0.4sk

sk+1 = −0.4ok + 1.3sk

That is, if there would be no squirrels to hunt, only 30% of the owls would survive to the
next month; if there were no owls that hunted squirrels, then the squirrel population
would grow by factor 1.3 every month.

Let xk =
[
ok

sk

]
. Express the population change from xk to xk+1 using a matrix A.

Diagonalize A.
Solution:

xk+1 =
[

0.3 0.4
−0.4 1.3

]
︸ ︷︷ ︸

A

xk

We diagonalize A. The characteristic equation is

0 = det(A − λI) = (0.3 − λ)(1.3 − λ) + 0.42 = λ2 − 1.6λ + 0.55,
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the eigenvalues are λ = 1
2(1.6 ±

√
1.62 − 4 · 0.55) = 0.8 ± 0.3 ∈ {0.5, 1.1}. We compute

a basis for each eigenspace.

λ = 0.5 : Nul(A − 0.5I) = Nul
[
−0.2 0.4
−0.4 0.8

]
= Nul

[
1 −2
0 0

]
= Span{

[
2
1

]
}.

λ = 1.1 : Nul(A − 1.1I) = Nul
[
−0.8 0.4
−0.4 0.2

]
= Nul

[
1 −1/2
0 0

]
= Span{

[
1/2
1

]
}.

We write the eigenvectors in a matrix P and compute P−1:

P =
[
2 1/2
1 1

]
, P−1 = 1

3/2

[
1 −1/2

−1 2

]
= 1

3

[
2 −1

−2 4

]
.

We obtain a diagonalization

A =
[
2 1/2
1 1

]
︸ ︷︷ ︸

P

[
0.5 0
0 1.1

]
︸ ︷︷ ︸

D

1
3

[
2 −1

−2 4

]
︸ ︷︷ ︸

P −1

.

□

(6) Continue the previous problem: Let the starting population be x1 =
[
o1
s1

]
=

[
20
100

]
.

(a) Give an explicit formula for the populations in month k + 1.
(b) Are the populations growing or decreasing over time? By which factor?
(c) What is ratio of owls to squirrels after 12 months? After 24 months? Can you

explain why?
Solution:

(a) (2 points)

xk+1 = Akx1 = PDkP−1x1 =
[
2 1/2
1 1

] [
0.5k 0

0 1.1k

]
1
3

[
2 −1

−2 4

] [
20
100

]

=
[

60 · 1.1k − 40 · 0.5k

120 · 1.1k − 20 · 0.5k

]
(b) (2 points) Both populations are growing. For large k, the term 0.5k can be ne-

glected (e.g. for k ≥ 12 we have 1.1k ≥ 3.138 and 0.5k ≤ 0.00025). We can
approximate the populations by

xk+1 ≈
[

60 · 1.1k

120 · 1.1k

]
= 1.1k

[
60
120

]
for large k.

After a large number of months, both populations grow by a factor of 1.1 every
month.

(c) (1 point) The populations are x13 =
[
188.3
376.6

]
after 12 months and x25 =

[
591.0
1182.0

]
after 24 months. After a large number of months, the ratio of owls to squirrels is
always about 1 : 2 by the approximation formula for xk+1.

□


