Math 2135 - Assignment 6

Due October 10, 2025

(1) Prove the missing implication in the Invertible Matrix Theorem: If a square matrix A is invertible, then so is it transpose A^T .

Hint: What is the transpose of a product of two matrices?

Solution: Recall that $(AB)^T = B^T A^T$. Hence transposing

$$AA^{-1} = A^{-1}A = I_n$$

vields

$$(A^{-1})^T A^T = A^T (A^{-1}) T = I_n.$$

Hence $(A^{-1})^T$ is the inverse of A^T .

(2) Prove that $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is not invertible if ad - bc = 0.

Hint: Show that the columns of A are linearly dependent. Consider the cases a = 0 and $a \neq 0$ separately.

Solution: Assume ad - bc = 0.

Case, a = 0: Then bc = 0 yields b = 0 or c = 0. Hence

$$A = \begin{bmatrix} 0 & 0 \\ c & d \end{bmatrix} \text{ or } A = \begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix}.$$

Either way, the columns of A are linearly dependent.

Case, $a \neq 0$: Then $d = \frac{bc}{a}$. Hence

$$A = \begin{bmatrix} a & b \\ c & \frac{bc}{a} \end{bmatrix}$$

and the second column is $\frac{b}{a}$ times the first column. Hence the columns of A are linearly dependent.

By the Inverse Matrix Theorem, a matrix with linearly dependent columns is not invertible. $\hfill\Box$

(3) Let A be an **upper triangular matrix**, that is,

$$A = \begin{bmatrix} a_{11} & \dots & \dots & a_{1n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{bmatrix}$$

with zeros below the diagonal. Show

- (a) A is invertible iff there are no zeros in the diagonal of A.
- (b) If A^{-1} exists, it is an upper triangular matrix as well. Hint: When row reducing $[A, I_n]$ to $[I_n, A^{-1}]$, what happens to the n columns on the right?

Solution:

(a) By the Invertible Matrix Theorem A is invertible iff the columns of A are linearly independent.

If the triangular matrix A has no zero diagonal entries, then A is actually in echelon form and its columns are linearly independent (hence A is invertible).

Conversely if a diagonal entry of A is 0, then there is no pivot in this column of the echelon form of A. Hence the columns of A are not linearly independent (and A not invertible).

- (b) When row reducing $[A, I_n]$ to $[I_n, A^{-1}]$, we only need to obtain ones in the diagonal of A (by scaling rows) and zeros above the diagonal of A (by adding multiples of one row to rows above). These operations transform I_n into an upper triangular matrix A^{-1} .
- (4) Assume that $A \in \mathbb{R}^{n \times n}$ is invertible. Show that $T \colon \mathbb{R}^n \to \mathbb{R}^n, \ x \mapsto A \cdot x$, is bijective.

Hint: Give a formula for the inverse function f^{-1} and check that it indeed describes the inverse of T.

Solution: $T^{-1}: F^n \to F^n, x \mapsto A^{-1} \cdot x$, is the inverse for T. This can be verified by composing $x \to A^{-1}x$ with $T: x \to Ax$ and observing that one gets the identity function on \mathbb{R}^n .

- (5) (a) What is the inverse of the rotation R by angle α counter clockwise around the origin in \mathbb{R}^2 ? What is the standard matrix of R^{-1} ?
 - (b) What is the inverse of a reflection S on a line through the origin in \mathbb{R}^2 ? What can you say about the standard matrix B of S and its inverse? You do not have to write down B for this.

Solution:

(a) R^{-1} is just the rotation by α clockwise (or by $-\alpha$ counter clockwise). R has standard matrix

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

and
$$R^{-1}$$
 has standard matrix
$$A^{-1} = \frac{1}{\cos \alpha^2 + \sin \alpha^2} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) \\ \sin(-\alpha) & \cos(-\alpha) \end{bmatrix}$$

(b) Reflecting twice puts every point x back to itself. Hence any reflection is its own inverse, $S^{-1} = S$. the standard matrix B of S also satisfies $B^{-1} = B$.

- (6) True of false? Explain your answer.
 - (a) If A, B are square matrices with $AB = I_n$, then A and B are invertible.
 - (b) Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$ such that Ax = b is inconsistent. Then $\mathbb{R}^n \to \mathbb{R}^n$ \mathbb{R}^n , $x \mapsto Ax$ is not injective.

Solution:

- (a) True. By the Invertible Matrix Theorem $A^{-1} = B$ and $B^{-1} = A$.
- (b) True. If Ax = b is inconsistent, then A does not have a pivot in every row. Since A is square, this means that it does not have a pivot in every column either. So $x \mapsto Ax$ is not injective.
- (7) Explain why the following are not subspaces of \mathbb{R}^2 . Give explicit counter examples for subspace properties that are not satisfied.

(a)
$$U = \{\begin{bmatrix} x \\ y \end{bmatrix} \mid x, y \in \mathbb{R}, x \ge 0\}$$

(b) $V = \mathbb{Z}^2$ (\mathbb{Z} denotes the set of all integers)

- (c) $W = \{ \begin{vmatrix} x \\ y \end{vmatrix} \mid x, y \in \mathbb{R}, |x| = |y| \}$ (|x| denotes the absolute value of x).

Solution:

- (a) Not closed under scalar multiples, e.g. $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \in U$ but $(-1) \begin{bmatrix} 1 \\ 0 \end{bmatrix} \notin U$ (b) Not closed under scalar multiples, e.g. $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \in V$ but $\sqrt{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \notin V$
- (c) Not closed under addition, e.g. $\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \in W$ but $\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} \not\in W$
- (8) Let $A \in \mathbb{R}^{m \times n}$. Prove that Null(A) is a subspace of \mathbb{R}^n .

Solution: We show the 3 conditions for being a subspace.

- (a) The zero vector is clearly in Null(A) since $A\mathbf{0} = \mathbf{0}$.
- (b) Let **u** and w be arbitary vectors in Null(A). Then $A\mathbf{u} = \mathbf{0}$ and $Aw = \mathbf{0}$. We show that $\mathbf{u} + w$ is in Null(A).

$$A(\mathbf{u} + w) = A\mathbf{u} + Aw = \mathbf{0} + \mathbf{0} = \mathbf{0}.$$

So $\mathbf{u} + w$ is in Null(A).

(c) Let $r \in \mathbb{R}$. Then

$$A(r\mathbf{u}) = r(A\mathbf{u}) = r\mathbf{0} = \mathbf{0}.$$

Hence $r\mathbf{u}$ is in Null(A).