
Math 2135 - Assignment 6
Due October 10, 2025

(1) Prove the missing implication in the Invertible Matrix Theorem: If a square matrix
A is invertible, then so is it transpose AT .
Hint: What is the transpose of a product of two matrices?
Solution: Recall that (AB)T = BT AT . Hence transposing

AA−1 = A−1A = In

yields
(A−1)T AT = AT (A−1)T = In.

Hence (A−1)T is the inverse of AT . □

(2) Prove that A =
[
a b
c d

]
is not invertible if ad − bc = 0.

Hint: Show that the columns of A are linearly dependent. Consider the cases
a = 0 and a ̸= 0 separately.
Solution: Assume ad − bc = 0.

Case, a = 0: Then bc = 0 yields b = 0 or c = 0. Hence

A =
[
0 0
c d

]
or A =

[
0 b
0 d

]
.

Either way, the columns of A are linearly dependent.
Case, a ̸= 0: Then d = bc

a
. Hence

A =
[
a b
c bc

a

]

and the second column is b
a

times the first column. Hence the columns of A are
linearly dependent.

By the Inverse Matrix Theorem, a matrix with linearly dependent columns is
not invertible. □

(3) Let A be an upper triangular matrix, that is,

A =


a11 . . . . . . a1n

0 . . . ...
... . . . . . . ...
0 . . . 0 ann


with zeros below the diagonal. Show
(a) A is invertible iff there are no zeros in the diagonal of A.
(b) If A−1 exists, it is an upper triangular matrix as well.

Hint: When row reducing [A, In] to [In, A−1], what happens to the n columns
on the right?

Solution:
(a) By the Invertible Matrix Theorem A is invertible iff the columns of A are

linearly independent.
If the triangular matrix A has no zero diagonal entries, then A is actually in
echelon form and its columns are linearly independent (hence A is invertible).
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Conversely if a diagonal entry of A is 0, then there is no pivot in this column
of the echelon form of A. Hence the columns of A are not linearly independent
(and A not invertible).

(b) When row reducing [A, In] to [In, A−1], we only need to obtain ones in the
diagonal of A (by scaling rows) and zeros above the diagonal of A (by adding
multiples of one row to rows above). These operations transform In into an
upper triangular matrix A−1.

□
(4) Assume that A ∈ Rn×n is invertible. Show that T : Rn → Rn, x 7→ A · x, is

bijective.
Hint: Give a formula for the inverse function f−1 and check that it indeed

describes the inverse of T .
Solution: T −1 : F n → F n, x 7→ A−1 · x, is the inverse for T . This can be verified
by composing x → A−1x with T : x → Ax and observing that one gets the identity
function on Rn. □

(5) (a) What is the inverse of the rotation R by angle α counter clockwise around
the origin in R2? What is the standard matrix of R−1?

(b) What is the inverse of a reflection S on a line through the origin in R2? What
can you say about the standard matrix B of S and its inverse? You do not
have to write down B for this.

Solution:
(a) R−1 is just the rotation by α clockwise (or by −α counter clockwise). R has

standard matrix
A =

[
cos α − sin α
sin α cos α

]
and R−1 has standard matrix

A−1 = 1
cos α2 + sin α2

[
cos α sin α

− sin α cos α

]
=

[
cos(−α) − sin(−α)
sin(−α) cos(−α)

]
(b) Reflecting twice puts every point x back to itself. Hence any reflection is its

own inverse, S−1 = S. the standard matrix B of S also satisfies B−1 = B.
□

(6) True of false? Explain your answer.
(a) If A, B are square matrices with AB = In, then A and B are invertible.
(b) Let A ∈ Rn×n and b ∈ Rn such that Ax = b is inconsistent. Then Rn →

Rn, x 7→ Ax is not injective.
Solution:
(a) True. By the Invertible Matrix Theorem A−1 = B and B−1 = A.
(b) True. If Ax = b is inconsistent, then A does not have a pivot in every row.

Since A is square, this means that it does not have a pivot in every column
either. So x 7→ Ax is not injective.

□
(7) Explain why the following are not subspaces of R2. Give explicit counter examples

for subspace properties that are not satisfied.

(a) U = {
[
x
y

]
| x, y ∈ R, x ≥ 0}

(b) V = Z2 (Z denotes the set of all integers)

(c) W = {
[
x
y

]
| x, y ∈ R, |x| = |y|} (|x| denotes the absolute value of x).



3

Solution:
(a) Not closed under scalar multiples, e.g.

[
1
0

]
∈ U but (−1)

[
1
0

]
̸∈ U

(b) Not closed under scalar multiples, e.g.
[
1
0

]
∈ V but

√
2

[
1
0

]
̸∈ V

(c) Not closed under addition, e.g.
[
1
1

]
,

[
1

−1

]
∈ W but

[
1
1

]
+

[
1

−1

]
̸∈ W

□
(8) Let A ∈ Rm×n. Prove that Null(A) is a subspace of Rn.

Solution: We show the 3 conditions for being a subspace.
(a) The zero vector is clearly in Null(A) since A0 = 0.
(b) Let u and w be arbitary vectors in Null(A). Then Au = 0 and Aw = 0. We

show that u + w is in Null(A).
A(u + w) = Au + Aw = 0 + 0 = 0.

So u + w is in Null(A).
(c) Let r ∈ R. Then

A(ru) = r(Au) = r0 = 0.

Hence ru is in Null(A).
□


