Math 2135 - Assignment 4

Due September 26, 2025

(1) Is the following injective, surjective, bijective? What is its range?

$$T: \mathbb{R}^3 \to \mathbb{R}^2, \ x \mapsto \begin{bmatrix} 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix} \cdot x$$

Solution: Not injective because x_1 is free in $A \cdot x = 0$. Alternatively, the columns of A are linearly dependent. So T is not injective (Theorem 12 of Section 1.9).

Surjective because A is in row echelon form and has no 0-rows (Theorem 12 of Section 1.9). Hence its range is just its codomain \mathbb{R}^2 .

Bijective means injective and surjective. Hence T is not bijective because it is not injective. \Box

(2) Is the following injective, surjective, bijective? What is its range?

$$T: \mathbb{R}^3 \to \mathbb{R}^3, \ x \mapsto \begin{bmatrix} 1 & -1 & 2 \\ -2 & 0 & 1 \\ 3 & -1 & 1 \end{bmatrix} \cdot x$$

Solution: Row reduce the standard matrix of T to get

T is not injective because not every column of the echelon form of A has a pivot. In particular x_3 is free in $A \cdot x = \mathbf{0}$.

T is not surjective because the echelon form of A has a zero row. Hence Ax = y is not consistent for every $y \in \mathbb{R}^3$.

Since T is neither injective nor surjective, it is certainly not bijective.

The range of T is the span of the columns of A. Since the columns are linearly dependent it cannot be all of \mathbb{R}^3 . Since the columns don't lie all on a line, they have to span a plane in \mathbb{R}^3 , say spanned by the first two columns of A.

- (3) True or False? Explain why and correct the false statements to make them true.
 - (a) If vectors $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent and \mathbf{v}_3 is not in the span of $\mathbf{v}_1, \mathbf{v}_2$, then $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is linear independent.
 - (b) A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by the images of the unit vectors in \mathbb{R}^n .
 - (c) Not every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as T(x) = Ax for some matrix A.
 - (d) The composition of any two linear transformations is linear as well.

Solution:

(a) True. By a Theorem from class, \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are linearly dependent iff one of the vectors is in the span of the previous vectors. Now assume \mathbf{v}_1 , \mathbf{v}_2 are linearly independent. Then \mathbf{v}_1 is not 0 and \mathbf{v}_2 is not a multiple of \mathbf{v}_1 . Further assume

 \mathbf{v}_3 is not in the span of $\mathbf{v}_1, \mathbf{v}_2$. Then no \mathbf{v}_i is in the span of $\mathbf{v}_1, \dots, \mathbf{v}_{i-1}$. Thus $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent.

- (b) True because every vector is a linear combination of unit vectors.
- (c) False. Every linear $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as T(x) = Ax for its standard matrix A.
- (d) True. If S, T are linear, then

$$S(T(u+v)) = S(T(u) + T(v)) = S(T(u) + S(T(v))$$

for all u, v in the domain of T and

$$S(T(cu)) = S(cT(u)) = cS(T(u))$$

for $c \in \mathbb{R}$. Hence S composed with T is linear.

- (4) True or False? Explain why and correct the false statements to make them true.
 - (a) $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector $x \in \mathbb{R}^n$ is mapped onto some vector in \mathbb{R}^m .

- (b) $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if every vector $x \in \mathbb{R}^n$ is mapped onto a unique vector in \mathbb{R}^m .
- (c) A linear map $T: \mathbb{R}^3 \to \mathbb{R}^2$ cannot be one-to-one.
- (d) There is a surjective linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$.

Solution:

(a) False. Any function $T: \mathbb{R}^n \to \mathbb{R}^m$ maps every vector $x \in \mathbb{R}^n$ onto some vector T(x) in \mathbb{R}^m .

The correct statement is: $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if for every vector $y \in \mathbb{R}^m$ there is some vector $x \in \mathbb{R}^n$ such that T(x) = y.

(b) False. Any function $T: \mathbb{R}^n \to \mathbb{R}^m$ maps every vector $x \in \mathbb{R}^n$ onto the unique vector T(x) in \mathbb{R}^m .

The correct statement is: $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if any 2 distinct vectors $x_1, x_2 \in \mathbb{R}^n$ are mapped to distinct vectors $T(x_1), T(x_2)$.

- (c) True. If A is the 2×3 standard matrix of T, then solving $A \cdot x = \mathbf{0}$ will always yield at least one free variable.
- (d) False. If A is the 4×3 standard matrix of T, then Ax = y cannot have a solution for every $y \in \mathbb{R}^4$ since the echelon form of A has at least one zero row.

(5) Let $T: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto Ax$, be a surjective linear map. Show that T is injective as well.

Hint: Consider the pivots in A.

Solution: By a Theorem of class, if T is surjective, then A must have a pivot in every row. Since A is square, it then also has a pivot in every column. But that means that the columns of A are linearly independent and that T is injective by the same Theorem.

(6) If defined, compute the following for the matrices

$$A = \begin{bmatrix} 2 & 1 & -4 \\ 3 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ -3 & 4 \\ 2 & 0 \end{bmatrix}, C = \begin{bmatrix} -2 & 1 \\ 2 & -3 \end{bmatrix}$$

Else explain why the computation is not defined.

(a)
$$AB$$
 (b) BA (c) AC (d) $A + C$ (e) $AB + 2C$

Solution:

$$AB = \begin{bmatrix} 2 \cdot 1 + 1 \cdot (-3) - 4 \cdot 2 & 2 \cdot (-1) + 1 \cdot 4 - 4 \cdot 0 \\ 3 \cdot 1 - 1 \cdot (-3) + 1 \cdot 2 & 3 \cdot (-1) - 1 \cdot 4 + 1 \cdot 0 \end{bmatrix} = \begin{bmatrix} -9 & 2 \\ 8 & -7 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 \cdot 2 - 1 \cdot 3 & 1 \cdot 1 - 1 \cdot (-1) & 1 \cdot (-4) - 1 \cdot 1 \\ * & * & * \end{bmatrix} = \begin{bmatrix} -1 & 2 & -5 \\ 6 & -7 & 16 \\ 4 & 2 & -8 \end{bmatrix}$$

AC is undefined since the length of A's rows and the length of C's columns are not the same.

A+C is undefined since the sizes of A and C don't match.

$$AB + 2C = \begin{bmatrix} -9 & 2 \\ 8 & -7 \end{bmatrix} + \begin{bmatrix} -4 & 2 \\ 4 & -6 \end{bmatrix} = \begin{bmatrix} -13 & 4 \\ 12 & -13 \end{bmatrix}$$

- (7) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ first rotate points around the origin by 60° counter clockwise and then reflect points at the line with equation y = x. Give the standard matrix for T.
 - (a) Recall the standard matrix A for the rotation R by 60° from class.
 - (b) Determine the standard matrix B for the reflection S at the line with equation y = x (a sketch will help).
 - (c) Since T is the composition of S and R, compute the standard matrix C of Tas the product of B and A. Careful about the order!

Solution:

(a) The standard matrix for the rotation R by $\alpha = 60^{\circ}$ is

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

(b) The reflection S at the diagonal flips the unit vectors, i.e., $T(e_1) = e_2$ and $T(e_2) = e_1$. Hence the standard matrix of S is

$$B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(c) Since $T = S \circ R$ (S after R), its standard matrix is

$$C = BA = \begin{bmatrix} \sin \alpha & \cos \alpha \\ \cos \alpha & -\sin \alpha \end{bmatrix}$$

(8) Continuation of (7): What is the standard matrix for $U: \mathbb{R}^2 \to \mathbb{R}^2$ which first reflects points at the line with equation y = x and then rotates points around the origin by 60° counter clockwise? Compare T and U.

Solution: Since $U = R \circ S$ (R after R), its standard matrix is

$$AB = \begin{bmatrix} -\sin\alpha & \cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix}$$

Comparing the result with the standard matrix of $S \circ R$, we see that the result is not the same. Order of function composition and matrix multiplication matters!