Math 2135 - Assignment 4

Due September 26, 2025

(1) Is the following injective, surjective, bijective? What is its range (image)?

$$T: \mathbb{R}^3 \to \mathbb{R}^2, \ x \mapsto \begin{bmatrix} 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix} \cdot x$$

(2) Is the following injective, surjective, bijective? What is its range (image)?

$$T: \mathbb{R}^3 \to \mathbb{R}^3, \ x \mapsto \begin{bmatrix} 1 & -1 & 2 \\ -2 & 0 & 1 \\ 3 & -1 & 1 \end{bmatrix} \cdot x$$

- (3) True or False? Explain why and correct the false statements to make them true.
 - (a) If vectors $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent and \mathbf{v}_3 is not in the span of $\mathbf{v}_1, \mathbf{v}_2$, then $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is linear independent.
 - (b) A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by the images of the unit vectors in \mathbb{R}^n .
 - (c) Not every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as T(x) = Ax for some matrix A.
 - (d) The composition of any two linear transformations is linear as well.
- (4) True or False? Explain why and correct the false statements to make them true.
 - (a) $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector $x \in \mathbb{R}^n$ is mapped onto some vector in \mathbb{R}^m .
 - (b) $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if every vector $x \in \mathbb{R}^n$ is mapped onto a unique vector in \mathbb{R}^m .
 - (c) A linear map $T: \mathbb{R}^3 \to \mathbb{R}^2$ cannot be one-to-one.
 - (d) There is a surjective linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$.
- (5) Let $T: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto Ax$, be a surjective linear map. Show that T is injective as well.

Hint: Consider the pivots in A.

(6) If defined, compute the following for the matrices

$$A = \begin{bmatrix} 2 & 1 & -4 \\ 3 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ -3 & 4 \\ 2 & 0 \end{bmatrix}, C = \begin{bmatrix} -2 & 1 \\ 2 & -3 \end{bmatrix}$$

Else explain why the computation is not defined.

- (a) AB (b) BA (c) AC (d) A + C (e) AB + 2C
- (7) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ first rotate points around the origin by 60° counter clockwise and then reflect points at the line with equation y = x. Give the standard matrix for T following these steps:
 - (a) Recall the standard matrix A for the rotation R by 60° from class.
 - (b) Determine the standard matrix B for the reflection S at the line with equation y = x (a sketch will help).
 - (c) Since T is the composition of S and R, compute the standard matrix C of T as the product of B and A. Careful about the order!
- (8) Continuation of (7): What is the standard matrix for $U: \mathbb{R}^2 \to \mathbb{R}^2$ which first reflects points at the line with equation y = x and then rotates points around the origin by 60° counter clockwise? Compare T and U.