## 2.2 Inverse matrices.

**Definition.** An  $n \times n$ -matrix A is invertible if there exists an  $n \times n$ -matrix B such that

$$AB = BA = I_n$$
.

Then B is called the *inverse* of A and denoted by  $A^{-1}$ .

Note: If an inverse of A exists, it is unique.

Theorem. Let  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ . If  $ad - bc \neq 0$ , then A is invertible and  $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ . - change signs of diagons.

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 - dange signs of diagod is not invertible. - divide by the product of

diagonal elements minus de

product of of diagoal denuts

Else if ad - bc = 0, then A is not invertible.

Proof. HW

Example.  $A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$ 

$$A^{-1} = \frac{1}{3 \cdot 6 - 4 \cdot 5} \begin{bmatrix} 6 - 4 \\ -5 & 3 \end{bmatrix}$$

**Theorem.** For invertible matrices A, B

$$(1) (A^{-1})^{-1} = A$$

$$(2) (AB)^{-1} = \mathcal{B}^{-1} A^{-1}$$

Proof. 1) By A. A' = A' A = In we have L'is invertible with inverse A

## 2.2 Characterizations of invertible matrices.

Question. How to recognize that a matrix has an inverse?

**Invertible Matrix Theorem.** For an  $A \in \mathbb{R}^{n \times n}$  the following are equivalent:

- (1) A is invertible.
- (2) A can be row reduced to  $I_n$ .
- (3) The columns of A are linearly independent.
- (4) The columns of A span  $\mathbb{R}^n$ .
- (5) There exists a left inverse  $C \in \mathbb{R}^{n \times n}$  of A such that  $CA = I_n$ .
- (6) There exists a right inverse  $D \in \mathbb{R}^{n \times n}$  of A such that  $AD = I_n$ .
- (7) The transpose  $A^T$  is invertible.

Proof. 1) 
$$\Rightarrow$$
 5) for  $C = A^{-1}$ 

5) => 3) By How 
$$Ax = 0$$
 implies  $CAx = CO = 0$ , here  $x = 0$ .

Null A = {0} and the columns of A linearly independent.

column and every von. Using von aparations this can be reduced to In.

Now we have proved 5) >> 6) sofar.

Then 
$$C = C(A'D) = (CA)D = D$$

House CA=AC=In and Listinvertible.



3

**Example.** Is  $A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix}$  invertible?

Rou veduce A

No avovous in edictor form => can be reduced to In no free variables, columns are l'intendezandent. A is invertible.

**Recall.**  $f:A\to B$  is bijective iff f has an inverse function  $f^{-1}\colon B\to A$  such that

$$f^{-1}(f(x)) = x$$
 for all  $x \in A$ ,  
 $f(f^{-1}(y)) = y$  for all  $y \in B$ .

**Theorem.** A linear map  $T: \mathbb{R}^n \to \mathbb{R}^n$ ,  $x \mapsto Ax$ , is bijective (invertible) iff A is invertible.

 $(Then \ T^{-1}\colon \mathbb{R}^n \to \mathbb{R}^n, \ x\mapsto A^{-1}x$ 

Proof. >> Assume T is bijective.

Then T is and D. R.

Ax = 6 has a solution for every 6 c 12h

By the Invabilde Matrix Thum 4) >> 1), A is invalide.

E HW.