Math 2135 - Practice Final

December, 2024

- (1) Let $B = (\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix})$. (a) Why is B a basis of \mathbb{R}^2 ? (b) Give change of coordinates matrix
 - (b) Give change of coordinates matrices $P_{E\leftarrow B}$ (for changing *B*-coordinates into coordinates w.r.t. the standard basis *E*) and $P_{B\leftarrow E}$.
 - (c) Compute the coordinates $[x]_B$ for $x = \begin{bmatrix} 2\\ 3 \end{bmatrix}$.

Solution:

(a) B is a basis since it contains 2 linear independent vectors of \mathbb{R}^2 (b)

$$P_{E \leftarrow B} = \begin{bmatrix} b_1, b_2 \end{bmatrix} = \begin{bmatrix} 1 & 3\\ 2 & 4 \end{bmatrix} \text{ and } P_{B \leftarrow E} = \begin{bmatrix} b_1, b_2 \end{bmatrix}^{-1} = \frac{1}{4 - 6} \begin{bmatrix} 4 & -3\\ -2 & 1 \end{bmatrix}$$
(c)

$$[x]_B = P_{B\leftarrow E} \cdot x = \frac{1}{2} \begin{bmatrix} -4 & 3\\ 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} 2\\ 3 \end{bmatrix} = \begin{bmatrix} 1/2\\ 1/2 \end{bmatrix}$$

(2) Let $B = (b_1, b_2)$ as in the previous problem. Let $h: \mathbb{R}^2 \to \mathbb{R}^2$ be linear such that $[h(b_1)]_E = \begin{bmatrix} -1\\1 \end{bmatrix}, [h(b_2)]_E = \begin{bmatrix} 0\\1 \end{bmatrix}.$ (a) Give the standard matrix $T_{E \leftarrow E}$ of h w.r.t. the standard basis. (b) Compute $h(\begin{bmatrix} 1\\1 \end{bmatrix}).$

Solution:

(a) Recall that the matrix of h w.r.t B and E is

$$T_{E \leftarrow B} = [[h(b_1)]_E \ [h(b_2)]_E] = \begin{bmatrix} -1 & 0\\ 1 & 1 \end{bmatrix}$$

We only have to change the first basis from B to E via the change of basis matrix $T_{B\leftarrow E}$,

$$T_{E \leftarrow E} = T_{E \leftarrow B} \cdot P_{B \leftarrow E} = \begin{bmatrix} -1 & 0\\ 1 & 1 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} -4 & 3\\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -3/2\\ -1 & 1 \end{bmatrix}$$

(b)

$$h\begin{pmatrix} 1\\1 \end{pmatrix} = T_{E\leftarrow E} \cdot \begin{bmatrix} 1\\1 \end{bmatrix} = \dots$$

	- 1
	- 1

(3) Let

$$A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 0 & 1 \\ 3 & -2 & 2 \end{bmatrix}$$

(a) Is the mapping $h: \mathbb{R}^3 \to \mathbb{R}^3$, $x \mapsto Ax$, injective, surjective, bijective?

(b) Give bases for null space, row space, column space of A.

Solution:

h is injective iff Nul A is trivial.

First find a row echelon form of A:

$$A \sim \begin{bmatrix} 1 & -2 & 3 \\ 0 & -4 & 7 \\ 0 & 4 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 3 \\ 0 & -4 & 7 \\ 0 & 0 & 0 \end{bmatrix}$$

For $A \cdot x = 0$ we now see that x_3 is a free variable. Set $x_3 = t$ a parameter in \mathbb{R} . Then $x_2 = 7/4 t$ and $x_1 = 1/2 t$. Hence

Nul
$$A = \operatorname{Span}\begin{pmatrix} 1/2\\ 7/4\\ 1 \end{pmatrix}$$
 has basis $\begin{pmatrix} 2\\ 7\\ 4 \end{pmatrix}$.

In particular Nul A is not 0 and h is not injective.

Further h is surjective iff $\operatorname{Col} A = \mathbb{R}^3$ (the codomain of h). Since A has only 2 pivots, dim $\operatorname{Col} A = 2$ and h is not surjective. For a basis of $\operatorname{Col} A$ pick the pivot columns of A, that is

Col A has basis
$$\left(\begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix}, \begin{bmatrix} -2\\ 0\\ 2 \end{bmatrix} \right)$$
.

For a basis of Row A pick the non zero rows of an echelon form of A, that is

Row A has basis ((1, -2, 3), (0, -4, 7)).

Note that

 $\dim \operatorname{Row} A = \dim \operatorname{Col} A = \text{number of columns of } A - \dim \operatorname{Nul} A.$

(4) Let A be the standard matrix for the rotation r of \mathbb{R}^2 by angle φ counterclockwise around the origin. What are the eigenvalues and eigenvectors of A? Can A be diagonalized over the reals?

Solution:

Version 1: The standard matrix of r is

$$A = \begin{bmatrix} \cos\varphi & -\sin\varphi\\ \sin\varphi & \cos\varphi \end{bmatrix}$$

Its characteristic polynomial is

 $\det(A - \lambda I) = \lambda^2 - 2\lambda\cos\varphi + (\cos\varphi)^2 + (\sin\varphi)^2 = \lambda^2 - 2\lambda\cos\varphi + 1.$

By the quadratic formula its roots are

$$\lambda_{1,2} = \cos \varphi \pm \sqrt{(\cos \varphi)^2 - 1} = \cos \varphi \pm i \sin \varphi.$$

Hence there are no real eigenvalues unless $\sin \varphi = 0$, that is, $\varphi = 0$ or π . In the first case A = I and has eigenvalue 1 (multiplicity 2) with eigenspace \mathbb{R}^2 . In the second case A = -I and has eigenvalue -1 (multiplicity 2) with eigenspace \mathbb{R}^2 .

Version 2 (with less computation): Rotation scales a vector $v \in \mathbb{R}^2$ only for $\varphi = 0$ in which case r(v) = v or for $\varphi = \pi$ in which case r(v) = -v. Hence A = I or A = -I as above.

(5) Diagonalize A if possible. Also compute det A. Is A invertible?

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & 3 \\ 0 & 0 & -2 \end{bmatrix}$$

Solution:

Characteristic polynomial: Expand the determinant by row 3 to get

$$\det(A - \lambda I) = (-2 - \lambda) \det \begin{bmatrix} 1 - \lambda & 2\\ 3 & -\lambda \end{bmatrix} = (-2 - \lambda)(\lambda^2 - \lambda - 6)$$

Eigenvalues: We see one root $\lambda_1 = -2$ of the characteristic polynomial and compute the others with the quadratic formula:

$$\lambda_{2,3} = 1/2 \pm \sqrt{1/4 + 6} = 1/2 \pm 5/2.$$

Hence $\lambda_2 = -2, \lambda_3 = 3.$

Eigenvectors: For Nul(A - (-2)I) consider

$$A + 2I = \begin{bmatrix} 3 & 2 & 3 \\ 3 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence Nul(A - (-2)I) has basis vector $v_1 = \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} -2\\ 3\\ 0 \end{bmatrix}$. For Nul(A - 3I) consider

$$A - 3I = \begin{bmatrix} -2 & 2 & 3\\ 3 & -3 & 3\\ 0 & 0 & -5 \end{bmatrix} \sim \begin{bmatrix} -2 & 2 & 3\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{bmatrix}$$

Hence Nul(A - 3I) has basis vector $v_3 = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$.

Diagonalization of A: Since we have found 3 linear independent eigenvectors v_1, v_2, v_3, A is diagonalizable. For

$$P = [v_1 v_2 v_3], \ A = P \operatorname{diag}(-2, -2, 3) \ P^{-1}.$$

 $\det A$ can be computed with the Rule of Sarrus, row reduction, expansion by row 3 or as the product of eigenvalues (see HW 12.4):

$$\det A = \lambda_1 \lambda_2 \lambda_3 = 12.$$

A has an inverse since det $A \neq 0$.

(6) Compute the inverse if possible:

$$A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$

Solution:

$$A^{-1} = \frac{1}{4-4} \begin{bmatrix} 4 & 2\\ 2 & 1 \end{bmatrix}$$

does not exist since $\det A = 0$.

Row reduce $[B, I_3]$:

$$\begin{bmatrix} 1 & 2 & 4 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & -3 & 4 & -1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 & 0 & 0 & 1 \\ 0 & 1 & -4/3 & 1/3 & 0 & -1/3 \\ 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & 0 & 1 & 4 & 0 \\ 0 & 1 & 0 & 1/3 & 4/3 & -1/3 \\ 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1/3 & 4/3 & 2/3 \\ 0 & 1 & 0 & 1/3 & 4/3 & -1/3 \\ 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$
So
$$B^{-1} = \begin{bmatrix} 1/3 & 4/3 & 2/3 \\ 1/3 & 4/3 & -1/3 \\ 0 & -1 & 0 \end{bmatrix}.$$

(7) Let $h: V \to W$ be a linear map, let $v_1, \ldots, v_k \in V$ such that $h(v_1), \ldots, h(v_k)$ are linearly independent. Show that v_1, \ldots, v_k are linearly independent. Solution:

Consider a linear combination

 $c_1v_1 + \dots + c_kv_k = 0$

for scalars c_1, \ldots, c_k . We want to show that all c_i are 0. Apply h to the equation above,

$$h(c_1v_1 + \dots + c_kv_k) = h(0)$$

By linearity of h this yields

$$c_1h(v_1) + \dots + c_kh(v_k) = 0.$$

Since $h(v_1), \ldots, h(v_k)$ are linearly independent, this implies $c_1 = \cdots = c_k = 0$. Hence the original vectors v_1, \ldots, v_k are linearly independent.