Math 2135 - Practice Final

December, 2024

- (1) Let $B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 2 1 *,* $\left\lceil 3 \right\rceil$ 4 1). (a) Why is B a basis of \mathbb{R}^2 ?
	- (b) Give change of coordinates matrices $P_{E \leftarrow B}$ (for changing *B*-coordinates into coordinates w.r.t. the standard basis E) and $P_{B \leftarrow E}$.
	- (c) Compute the coordinates $[x]_B$ for $x =$ $\lceil 2 \rceil$ 3 1 .

Solution:

(a) *B* is a basis since it contains 2 linear independent vectors of \mathbb{R}^2 (b)

$$
P_{E \leftarrow B} = [b_1, b_2] = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \text{ and } P_{B \leftarrow E} = [b_1, b_2]^{-1} = \frac{1}{4 - 6} \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}
$$

(c)

$$
[x]_B = P_{B \leftarrow E} \cdot x = \frac{1}{2} \begin{bmatrix} -4 & 3 \\ 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}
$$

(2) Let $B = (b_1, b_2)$ as in the previous problem. Let $h: \mathbb{R}^2 \to \mathbb{R}^2$ be linear such that $[h(b_1)]_E =$ $[-1]$ 1 1 $, [h(b_2)]_E =$ $\lceil 0 \rceil$ 1 1 . (a) Give the standard matrix $T_{E \leftarrow E}$ of *h* w.r.t. the standard basis. (b) Compute *h*($\lceil 1 \rceil$ 1 1).

Solution:

(a) Recall that the matrix of *h* w.r.t *B* and *E* is

$$
T_{E \leftarrow B} = [[h(b_1)]_E [h(b_2)]_E] = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}
$$

We only have to change the first basis from *B* to *E* via the change of basis matrix $T_{B\leftarrow E}$

$$
T_{E \leftarrow E} = T_{E \leftarrow B} \cdot P_{B \leftarrow E} = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} -4 & 3 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -3/2 \\ -1 & 1 \end{bmatrix}
$$

(b)

$$
h\begin{pmatrix} 1 \\ 1 \end{pmatrix} = T_{E \leftarrow E} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \dots
$$

□

(3) Let

$$
A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 0 & 1 \\ 3 & -2 & 2 \end{bmatrix}
$$

(a) Is the mapping $h: \mathbb{R}^3 \to \mathbb{R}^3$, $x \mapsto Ax$, injective, surjective, bijective?

(b) Give bases for null space, row space, column space of *A*.

Solution:

h **is injective iff** Nul *A* **is trivial.**

First find a row echelon form of *A*:

$$
A \sim \begin{bmatrix} 1 & -2 & 3 \\ 0 & -4 & 7 \\ 0 & 4 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 3 \\ 0 & -4 & 7 \\ 0 & 0 & 0 \end{bmatrix}
$$

For $A \cdot x = 0$ we now see that x_3 is a free variable. Set $x_3 = t$ a parameter in R. Then $x_2 = 7/4$ *t* and $x_1 = 1/2$ *t*. Hence

$$
\text{Nul } A = \text{Span}\begin{pmatrix} 1/2 \\ 7/4 \\ 1 \end{pmatrix} \text{ has basis } \begin{pmatrix} \begin{pmatrix} 2 \\ 7 \\ 4 \end{pmatrix} \end{pmatrix}.
$$

In particular Nul *A* is not 0 and *h* is not injective.

Further *h* is surjective iff $\text{Col } A = \mathbb{R}^3$ (the codomain of *h*). Since *A* has only 2 pivots, dim Col *A* = 2 and *h* is not surjective. For a basis of Col *A* pick the pivot columns of *A*, that is

Col *A* has basis
$$
\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}
$$
).

For a basis of Row *A* pick the non zero rows of an echelon form of *A*, that is

Row *A* has basis ((1*,* −2*,* 3)*,*(0*,* −4*,* 7))*.*

Note that

 $\dim \text{Row } A = \dim \text{Col } A = \text{number of columns of } A - \dim \text{Null } A.$

□

(4) Let *A* be the standard matrix for the rotation *r* of \mathbb{R}^2 by angle φ counterclockwise around the origin. What are the eigenvalues and eigenvectors of *A*? Can *A* be diagonalized over the reals?

Solution:

Version 1: The standard matrix of *r* is

$$
A = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}
$$

Its characteristic polynomial is

 $\det(A - \lambda I) = \lambda^2 - 2\lambda \cos \varphi + (\cos \varphi)^2 + (\sin \varphi)^2 = \lambda^2 - 2\lambda \cos \varphi + 1.$

By the quadratic formula its roots are

$$
\lambda_{1,2} = \cos \varphi \pm \sqrt{(\cos \varphi)^2 - 1} = \cos \varphi \pm i \sin \varphi.
$$

Hence there are no real eigenvalues unless $\sin \varphi = 0$, that is, $\varphi = 0$ or π . In the first case $A = I$ and has eigenvalue 1 (multiplicitiy 2) with eigenspace \mathbb{R}^2 . In the second case $A = -I$ and has eigenvalue -1 (multiplicitiy 2) with eigenspace \mathbb{R}^2 .

Version 2 (with less computation): Rotation scales a vector $v \in \mathbb{R}^2$ only for $\varphi = 0$ in which case $r(v) = v$ or for $\varphi = \pi$ in which case $r(v) = -v$. Hence $A = I$ or $A = -I$ as above. □

(5) Diagonalize *A* if possible. Also compute det *A*. Is *A* invertible?

$$
A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & 3 \\ 0 & 0 & -2 \end{bmatrix}
$$

Solution:

Characteristic polynomial: Expand the determinant by row 3 to get

$$
\det(A - \lambda I) = (-2 - \lambda) \det \begin{bmatrix} 1 - \lambda & 2 \\ 3 & -\lambda \end{bmatrix} = (-2 - \lambda)(\lambda^2 - \lambda - 6)
$$

Eigenvalues: We see one root $\lambda_1 = -2$ of the characteristic polynomial and compute the others with the quadratic formula:

$$
\lambda_{2,3} = 1/2 \pm \sqrt{1/4 + 6} = 1/2 \pm 5/2.
$$

Hence $\lambda_2 = -2, \lambda_3 = 3$.

Eigenvectors: For $\text{Nul}(A - (-2)I)$ consider

$$
A + 2I = \begin{bmatrix} 3 & 2 & 3 \\ 3 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

Hence Nul($A - (-2)I$) has basis vector $v_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ $\Big\}$, $v_2 = \Big[\frac{-2}{3}$ |. For $\text{Nul}(A-3I)$ consider

$$
A - 3I = \begin{bmatrix} -2 & 2 & 3 \\ 3 & -3 & 3 \\ 0 & 0 & -5 \end{bmatrix} \sim \begin{bmatrix} -2 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$

 has basis vector $v_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Hence Nul $(A - 3I)$ has basis vector $v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

Diagonalization of *A***:** Since we have found 3 linear independent eigenvectors v_1, v_2, v_3, A is diagonalizable. For

$$
P = [v_1 v_2 v_3], A = P \text{ diag}(-2, -2, 3) P^{-1}.
$$

det*A* can be computed with the Rule of Sarrus, row reduction, expansion by row 3 or as the product of eigenvalues (see HW 12.4):

$$
\det A = \lambda_1 \lambda_2 \lambda_3 = 12.
$$

A has an inverse since $\det A \neq 0$.

(6) Compute the inverse if possible:

$$
A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}
$$

Solution:

$$
A^{-1} = \frac{1}{4 - 4} \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}
$$

does not exist since $\det A = 0$.

Row reduce $[B, I_3]$:

$$
\begin{bmatrix} 1 & 2 & 4 & 1 & 0 & 0 \ 0 & 0 & -1 & 0 & 1 & 0 \ 1 & -1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 & 0 & 0 & 1 \ 0 & 0 & -1 & 0 & 1 & 0 \ 0 & -3 & 4 & -1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 & 0 & 0 & 1 \ 0 & 1 & -4/3 & 1/3 & 0 & -1/3 \ 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}
$$

$$
\sim \begin{bmatrix} 1 & 2 & 0 & 1 & 4 & 0 \ 0 & 1 & 0 & 1/3 & 4/3 & -1/3 \ 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1/3 & 4/3 & 2/3 \ 0 & 1 & 0 & 1/3 & 4/3 & -1/3 \ 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}
$$
So
$$
B^{-1} = \begin{bmatrix} 1/3 & 4/3 & 2/3 \ 1/3 & 4/3 & -1/3 \ 0 & -1 & 0 \end{bmatrix}.
$$

(7) Let $h: V \to W$ be a linear map, let $v_1, \ldots, v_k \in V$ such that $h(v_1), \ldots, h(v_k)$ are linearly independent. Show that v_1, \ldots, v_k are linearly independent. **Solution:**

Consider a linear combination

 $c_1v_1 + \cdots + c_kv_k = 0$

for scalars c_1, \ldots, c_k . We want to show that all c_i are 0. Apply *h* to the equation above,

$$
h(c_1v_1+\cdots+c_kv_k)=h(0)
$$

By linearity of *h* this yields

$$
c_1h(v_1)+\cdots+c_kh(v_k)=0.
$$

Since $h(v_1), \ldots, h(v_k)$ are linearly independent, this implies $c_1 = \cdots = c_k = 0$. Hence the original vectors v_1, \ldots, v_k are linearly independent. \Box