Math 2135 - Assignment 13

Due December 9, 2024

- (1) (a) Give 3 vectors of length 1 in \mathbb{R}^3 that are orthogonal to $u = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$.
 - (b) Which of the following sets are orthogonal? Orthonormal?

$$A = \left\{ \begin{bmatrix} 0.6\\0.8 \end{bmatrix}, \begin{bmatrix} 0.8\\-0.6 \end{bmatrix} \right\}, \qquad B = \left\{ \frac{1}{3} \begin{bmatrix} 1\\-2\\2 \end{bmatrix}, \frac{1}{\sqrt{18}} \begin{bmatrix} 4\\1\\-1 \end{bmatrix} \right\}$$

(2) (a) Let W be the subspace of \mathbb{R}^3 with orthonormal basis $B = \left(\frac{1}{3} \begin{bmatrix} 2\\-1\\2 \end{bmatrix}, \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2\\0 \end{bmatrix}\right)$. Compute the coordinates $[x]_B$ for $x = \begin{bmatrix} 7\\4 \end{bmatrix}$ in W using dot products.

(b) Give a basis for W^{\perp} .

(c) Find the closest point to
$$y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 in W. What is the distance from y to W?

- (3) True or false. Explain your answers.
 - (a) Every orthogonal set is also orthonormal.
 - (b) Not every orthonormal set in \mathbb{R}^n is linearly independent.
 - (c) For each x and each subspace W, the vector $x \operatorname{proj}_W(x)$ is orthogonal to W.
- (4) Let W be a subset of \mathbb{R}^n . Show that its orthogonal complement

$$W^{\perp} := \{ x \in \mathbb{R}^n \mid x \text{ is orthogonal to all } w \in W \}$$

is a subspace of \mathbb{R}^n .

- (5) Let W be a subspace of \mathbb{R}^n . Show that
 - (a) $W \cap W^{\perp} = 0$
 - (b) $\dim W + \dim W^{\perp} = n$

Hint: Let w_1, \ldots, w_k be a basis of W. Use that $x \in W^{\perp}$ iff x is orthogonal to w_1, \ldots, w_k .

(6) Find the least squares solutions of Ax = b.

(a)
$$A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 2 \\ -3 \\ 4 \end{bmatrix}$

- (7) True or false for $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Explain your answers.
 - (a) A least squares solution of Ax = b is an \hat{x} such that $A\hat{x}$ is as close as possible to b.
 - (b) A least squares solution of Ax = b is an \hat{x} such that $A\hat{x} = \hat{b}$ for \hat{b} the orthogonal projection of b onto Col A.
 - (c) The point in Col A closest to b is a least squares solution of Ax = b.
 - (d) If Ax = b is consistent, then every solution x is a least squares solution.