Math 2135 - Assignment 10

Due November 8, 2024

Problems 1-5 are review material for the second midterm on November 6. Solve them before Wednesday!

- (1) Let *V, W* be vector spaces over R with zero vectors $0_V, 0_W$, respectively. Let $f: V \to$ *W* be linear. Show
	- (a) $f(0_V) = 0_W$,
	- (b) the kernel ker $f := \{v \in V : f(v) = 0_W\}$ of f is a subspace of V .

Solution:

(a) By linearity $f(0_V) = f(0_V + 0_V) = f(0_V) + f(0_V)$. Subtracting $f(0_V)$ from both sides yields $0_W = f(0_v)$.

(b) ker *f* contains 0_V by (a).

Show ker *f* is closed under addition: Let $u, v \in \text{ker } f$, that is, $f(u) = 0, f(v) = 0$. By linearity $f(u + v) = f(u) + f(v) = 0 + 0 = 0$. Hence $u + v \in \text{ker } f$.

Show ker *f* is closed under scalar multiples: Let $c \in \mathbb{R}$ and $v \in \text{ker } f$, that is, $f(v) = 0$. By linearity $f(cv) = cf(v) = c0 = 0$. Hence $cv \in \text{ker } f$.

- (2) Let $T: P_2 \to \mathbb{R}, p \mapsto p(3)$, be the map that evaluates a polynomial p at $x = 3$.
	- (a) Show that *T* is linear.
	- (b) Determine the kernel of *T*, that is, ker $T = \{p \in P_2 : T(p) = 0\}$, and the image of *T*, that is, $T(P_2)$.
	- (c) Is *T* injective, surjective, bijective?

Solution:

(a) For linearity, let $p, q \in P_2$. Their sum $p + q$ is the polynomial that maps t to $p(t) + q(t)$. So

$$
T(p+q) = (p+q)(3) = p(3) + q(3) = T(p) + T(q).
$$

Further let $c \in \mathbb{R}$. Then cp maps t to $cp(t)$. So

$$
T(cp) = (cp)(3) = cp(3) = cT(p).
$$

Hence *T* is linear.

(b) The kernel of *T*, ker *T*, consists of all the polynomials that evaluate to 0 at 3, that is,

$$
\ker T = \{(t-3)q : q \in P_1\}.
$$

The range of *T*, $T(P_2)$, is R. For every $b \in \mathbb{R}$, there exists a polynomial $p \in P_2$ that is mapped to *b*. Choose for example the constant polynomial $p(t) = b$.

(c) Since the kernel of *T* is non-trivial, *T* is not injective. Since the range of *T* is equal to its codomain, *T* is surjective. *T* is not bijective since it is not injective.

□

- (3) Let $B = (b_1, b_2)$ with $b_1 = \begin{bmatrix} -5 \\ 11 \\ 5 \end{bmatrix}$ $\Big] \,, b_2 \;=\; \Big[\begin{smallmatrix} 3 \ -1 \ 4 \end{smallmatrix} \Big]$ and $C = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$ $\Big]$, $\Big[\frac{2}{-2}$ i) be bases of a subspace H of \mathbb{R}^3 .
	- (a) Compute the coordinates $[b_1]_C$ and $[b_2]_C$.
- (b) What is the change of coordinate matrix $P_{C \leftarrow B}$?
- (c) What is the change of coordinate matrix $P_{B \leftarrow C}$?

Solution:

(a) Solve the linear system

$$
x_1\begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ 11 \\ 5 \end{bmatrix}
$$
to obtain $x_1 = 3, x_2 = -4$. So $[b_1]_C = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$.

.

Similarly we get $[b_2]_C =$ 1

(b) Since the columns of $P_{C \leftarrow B}$ are just the coordinate tuples $[b_i]_C$, we see

i

$$
P_{C \leftarrow B} = \begin{bmatrix} 3 & 1 \\ -4 & 1 \end{bmatrix}
$$

(c)

$$
P_{B \leftarrow C} = P_{C \leftarrow B}^{-1} = \frac{1}{7} \begin{bmatrix} 1 & -1 \\ 4 & 3 \end{bmatrix}
$$

Alternatively we could also get $P_{B\leftarrow C}$ from its columns $[c_i]_B$. $]_B.$

(4) Let $C = (1 + t, t + t^2, 1 + t^2)$ be a basis for P_2 . Compute the coordinates $[p]_C$ for $p = 2 + t^2$.

Solution:

Solve

$$
c_1(1+t) + c_2(t+t^2) + c_3(1+t^2) = 2+t^2.
$$

Comparing the coefficients on both sides of this equation yields

Solving that system of linear equations yields $c_1 = \frac{1}{2}$ $\frac{1}{2}, c_2 = -\frac{1}{2}$ $\frac{1}{2}, c_3 = \frac{3}{2}$ $\frac{3}{2}$. So $[u]_B =$ \lceil $\overline{1}$ $\frac{1}{2}$
 $-\frac{1}{2}$
 $\frac{3}{2}$ 1 . □

(5) (a) Show that $A \in \mathbb{R}^{n \times n}$ is invertible iff rank $A = n$.

Solution:

 $A \in \mathbb{R}^{n \times n}$ is invertible

iff the columns of A form a basis of \mathbb{R}^n by the Inverse Matrix Theorem iff rank $A = n$ by the definition of rank as the dimension of Col A .

(b) If *A* is a 3 × 4-matrix, what is the largest possible rank of *A*? What is the smallest possible dimension of Nul *A*?

Solution:

The rank of a matrix is the number of its pivot elements, which is at most the number of its rows and at most the number of its columns. So rank $A \leq$ (c) If the nullspace of a 4×6 -matrix B has dimension 3, what is the dimension of the row space of B ?

Solution:

dim Nul $A + \dim$ Row $A =$ the number of columns of A So dim Row $A = 3$.

(6) Compute the determinant of the matrices by cofactor expansion. Pick a row or column that yields the least amount of computation:

$$
A = \begin{bmatrix} 0 & 1 & -3 \\ 5 & 4 & -4 \\ 0 & -3 & -4 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & -3 & 0 \\ 3 & 1 & 5 & 1 \\ 2 & 0 & 0 & 0 \\ 7 & 1 & -2 & 5 \end{bmatrix}
$$

Solution:

Expand $\det A$ down the first column:

 $\det A = 0 \cdot \det A_{11} - 5 \cdot \det A_{21} + 0 \cdot \det A_{31} = -5 \cdot \det \begin{bmatrix} 1 & -3 \\ -3 & -4 \end{bmatrix} = -5(1(-4) - (-3)(-3)) = 65$

Expand det B across 3rd row:

$$
\det B = 2 \cdot \det B_{13} = 2 \cdot \det \begin{bmatrix} 0 & -3 & 0 \\ 1 & 5 & 1 \\ 1 & -2 & 5 \end{bmatrix}
$$

Expand across 1st row:

$$
\det B_{13} = -1(-3)\det \begin{bmatrix} 1 & 1 \\ 1 & 5 \end{bmatrix} = 3 \cdot (1 \cdot 5 - 1 \cdot 1) = 12
$$

So det $B = 2 \cdot 12 = 24$.

(7) Rule of Sarrus for the determinant of 3×3 -matrices. Let

 \overline{a}

$$
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}
$$

Prove that

$$
\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}
$$

Hint: Expand $\det A$ across the first row.

 \Box

 \Box

Solution:

det
$$
A = a_{11} \cdot \det A_{11} - a_{12} \cdot \det A_{12} + a_{13} \cdot \det A_{13}
$$

\n
$$
= a_{11} \cdot \det \begin{bmatrix} a_{22} & a_{23} \ a_{32} & a_{33} \end{bmatrix} - a_{12} \cdot \det \begin{bmatrix} a_{21} & a_{23} \ a_{31} & a_{33} \end{bmatrix} + a_{13} \cdot \det \begin{bmatrix} a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix}
$$
\n
$$
= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})
$$
\n
$$
= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}
$$

- (8) Consider $A =$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
	- (a) How does switching the rows effect the determinant? Compare det *A* and det $\begin{bmatrix} c & d \\ a & b \end{bmatrix}$.

Solution:

Interchanging 2 rows changes the sign of the determinant:

$$
\det \begin{bmatrix} c & d \\ a & b \end{bmatrix} = cb - ad = -\det A
$$

- (b) How does multiplying one row by a scalar effect the determinant? Compare det *A* and det $\begin{bmatrix} ra & rb \\ c & d \end{bmatrix}$.
- (c) How does adding a multiple of one row to the other row effect the determinant? Compare det *A* and det $\begin{bmatrix} a & b \\ c+ra & d+rb \end{bmatrix}$.

Solution:

Adding a multiple of the first row to another does not change the determinant:

$$
\det\begin{bmatrix} a & b \\ c+ra & d+rb \end{bmatrix} = a(d+rb) - b(c+ra) = ad - bc = \det A
$$

4

□