Math 2135 - Assignment 10

Due November 8, 2024

Problems 1-5 are review material for the second midterm on November 6. Solve them before Wednesday!

- (1) Let V, W be vector spaces over \mathbb{R} with zero vectors $0_V, 0_W$, respectively. Let $f: V \to W$ be linear. Show
 - (a) $f(0_V) = 0_W$,
 - (b) the kernel ker $f := \{v \in V : f(v) = 0_W\}$ of f is a subspace of V.
- (2) Let $T: P_2 \to \mathbb{R}, p \mapsto p(3)$, be the map that evaluates a polynomial p at x = 3.
 - (a) Show that T is linear.
 - (b) Determine the kernel of T, that is, ker $T = \{p \in P_2 : T(p) = 0\}$, and the image of T, that is, $T(P_2)$.
 - (c) Is T injective, surjective, bijective?
- (3) Let $B = (b_1, b_2)$ with $b_1 = \begin{bmatrix} \frac{-5}{11} \\ \frac{1}{5} \end{bmatrix}, b_2 = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}$ and $C = (\begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix})$ be bases of a subspace H of \mathbb{R}^3 .
 - (a) Compute the coordinates $[b_1]_C$ and $[b_2]_C$.
 - (b) What is the change of coordinate matrix $P_{C \leftarrow B}$?
 - (c) What is the change of coordinate matrix $P_{B\leftarrow C}$?
- (4) Let $C = (1 + t, t + t^2, 1 + t^2)$ be a basis for P_2 . Compute the coordinates $[p]_C$ for $p = 2 + t^2$.
- (5) (a) Show that $A \in \mathbb{R}^{n \times n}$ is invertible iff rank A = n.
 - (b) If A is a 3×4 -matrix, what is the largest possible rank of A? What is the smallest possible dimension of Nul A?
 - (c) If the nullspace of a 4×6 -matrix B has dimension 3, what is the dimension of the row space of B?
- (6) Compute the determinant of the matrices by cofactor expansion. Pick a row or column that yields the least amount of computation:

	Γo	1	21			[1	0	-3	0	
A =	$\begin{bmatrix} 0\\5\\0 & - \end{bmatrix}$	T	$\begin{bmatrix} -3 \\ -4 \\ -4 \end{bmatrix}$	Л		3	1	5	1	
		$\frac{4}{-3}$		1	$\mathcal{I} =$	2	0	0	0	•
					B =	7	1	-2	5	

(7) Rule of Sarrus for the determinant of 3×3 -matrices. Let

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Prove that

det $A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$ Hint: Expand det A across the first row.

- (8) Consider $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - (a) How does switching the rows effect the determinant? Compare det A and det $\begin{bmatrix} c & d \\ a & b \end{bmatrix}$.

 - (b) How does multiplying one row by a scalar effect the determinant? Compare det A and det $\begin{bmatrix} ra & rb \\ c & d \end{bmatrix}$. (c) How does adding a multiple of one row to the other row effect the determinant? Compare det A and det $\begin{bmatrix} a & b \\ c+ra & d+rb \end{bmatrix}$.