Math 2135 - Assignment 9

Due November 1, 2024

(1) Let
$$
b_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}
$$
, $b_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$, $b_3 = \begin{bmatrix} 1 \\ 2.5 \\ -5 \end{bmatrix}$.

(a) Find vectors u_1, \ldots, u_k such that $(b_1, b_2, u_1, \ldots, u_k)$ is a basis for \mathbb{R}^3 .

(b) Find vectors v_1, \ldots, v_ℓ such that $(b_3, v_1, \ldots, v_\ell)$ is a basis for \mathbb{R}^3 .

Prove that your choices for (a) and (b) form a basis.

Solution:

Both bases have 3 vectors. Thus $k = 1$ and $\ell = 2$.

(a) One possible choice is $u_1 = e_1$. We show that (b_1, b_2, e_1) is a basis by reducing the following augmented matrix to echelon form:

There is no free variable. Thus the columns are linearly independent. Also, the vectors span \mathbb{R}^3 since there is no zero row.

(b) One possible choice is $v_1 = e_1$ and $v_2 = e_2$. We show that (b_3, e_1, e_2) is a basis by reducing the following augmented matrix to echelon form:

There is no free variable. Thus the columns are linearly independent. Also, the vectors span \mathbb{R}^3 since there is no zero row.

□

(2) A 25×35 matrix *A* has 20 pivots. Find dim Nul *A*, dim Col *A*, dim Row *A*, and rank *A*. **Solution:**

The number of pivots, dim Row *A*, dim Col *A*, and the rank are equal. So

 \dim Row $A = \dim$ Col $A = \text{rank } A = 20$.

By the rank theorem, dim Nul A + rank A = 35. Thus

$$
\dim \text{Nul } A = 35 - 20 = 15.
$$

□

- (3) True or false? Explain.
	- (a) A basis of *B* is a set of linear independent vectors in *V* that is as large as possible.
	- (b) If dim $V = n$, then any *n* vectors that span V are linearly independent.
	- (c) Every 2-dimensional subspace of \mathbb{R}^2 is a plane.

Solution:

- (a) True. If linear independent vectors a_1, \ldots, a_k in V do not span V yet, you can get a bigger linear set by adding a vector a_{k+1} which is not in $\text{Span}\{a_1, \ldots, a_k\}.$
- (b) True by the Basis Theorem.
- (c) True since any two linear independent vectors in \mathbb{R}^2 span a plane through the origin.
	- □

□

- (4) Let P_3 the vector space of polynomials of degree \leq 3 over R with basis $B =$ $(1, x, x^2, x^3).$
	- (a) Find the matrix $d_{B\leftarrow B}$ for the derivation map $d: P_3 \to P_3, p \to p'$.
	- (b) Use $d_{B\leftarrow B}$ to compute $[p']_B$ and p' for the polynomial p with $[p]_B = (-3, 2, 0, 1)$. **Solution:**

Compute coordinates of the derivatives $d(b_i)$ for the basis vectors in *B* to get

$$
d_{B \leftarrow B} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

Then $[p']_B = d_{B \leftarrow B}[p]_b = (2, 0, 3)$ and $p' = 2 + 3x^2$. □

- (5) Let $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 1 1 *,* $\lceil 1 \rceil$ −1) and $C = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ 5 1 *,* $\lceil 1 \rceil$ 3) be bases of \mathbb{R}^2 , let *E* be the standard basis of \mathbb{R}^2 .
	- (a) Find the change of coordinates matrix $P_{E \leftarrow B}$ for $f : [u]_B \mapsto [u]_E$.
	- (b) Find the change of coordinates matrix $P_{C \leftarrow E}$ for $g : [u]_E \mapsto [u]_C$.
	- (c) Find the change of coordinates matrix $P_{C \leftarrow B}$ for $h : [u]_B \mapsto [u]_C$. Hint: *h* is the composition of *q* and *f*, $h([u]_B) = q(f([u]_B))$.

Solution:

- Let E be the standard basis of \mathbb{R}^2 .
- (a) How to compute *E*-coordinates from *B*-coordinates? The standard matrix for *f* is

$$
P_{B \leftarrow E} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
$$

Note that the columns are exactly the vectors of *B*. Changing coordinates from any *B* to the standard basis *E* is easy.

(b) How to compute *C*-coordinates from *E*-coordinates? The standard matrix for *g* is

$$
P_{E \leftarrow C} = P_{C \leftarrow E}^{-1} = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}^{-1} = \frac{1}{1} \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}
$$

Note that the matrix is the inverse of the matrix whose columns are the vectors of *C*. For changing coordinates from the standard basis *E* to a basis *C* you need to solve a linear system or find the inverse.

(c) How to compute *C*-coordinates from *B*-coordinates? First go from *B*-coordinates to *E*-coordinates and then to *C*-coordinates. The matrix for $h = g \circ f$ is

$$
P_{C \Leftarrow B} = P_{C \leftarrow E} P_{E \Leftarrow B} = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -3 & -7 \end{bmatrix}
$$

- (6) Determine the standard matrix for the reflection *t* of \mathbb{R}^2 at the line $3x + y = 0$ as follows:
	- (a) Find a basis B of \mathbb{R}^2 whose vectors are easy to reflect.
	- (b) Give the matrix $t_{B\leftarrow B}$ for the reflection with respect to the coordinate system determined by *B*.
	- (c) Use the change of coordinate matrix to compute the standard matrix $t_{E \leftarrow E}$ with respect to the standard basis $E = (e_1, e_2)$.

Solution:

- (a) Pick $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ −3 1 *,* $\left\lceil 3 \right\rceil$ 1 1) with the first vector b_1 on the line $3x + y = 0$, the second *b*₂ orthogonal. Then $t(b_1) = b_1, t(b_2) = -b_2$.
- (b)

$$
t_{B \leftarrow B} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
$$

looks like the standard matrix for the reflection on the *x*-axis.

(c) To get $t_{E\leftarrow E}$ from $[t]_{B,B}$ we need to multiply with change of coordinate matrices,

$$
t_{E \leftarrow E} = P_{B \leftarrow E} t_{B \leftarrow B} P_{E \leftarrow B} = \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -3 \\ -3 & -1 \end{bmatrix} \frac{1}{10} \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} -8 & -6 \\ -6 & 8 \end{bmatrix}
$$

- (7) (a) Determine the standard matrix A for the rotation r of \mathbb{R}^3 around the *z*-axis through the angle $\pi/3$ counterclockwise. Hint: Use the matrix for the rotation around the origin in \mathbb{R}^2 for the *xy*-plane. What happens to e_3 under this rotation?
	- (b) Consider the rotation *s* of \mathbb{R}^3 around the line spanned by $\begin{bmatrix} \frac{1}{2} \\ 3 \end{bmatrix}$ I through the angle $\pi/3$ counterclockwise. Find a basis of \mathbb{R}^3 for which the matrix $s_{B\leftarrow B}$ is equal to *A* from (a).
	- (c) Give the standard matrix $s_{E \leftarrow E}$ for the standard basis E (You do not need to actually multiply and invert the involved matrices; the product formula is enough).

Solution:

(a) e_3 remains fixed, e_1, e_2 rotate like in \mathbb{R}^2 , i.e.,

$$
A = \begin{bmatrix} \cos \pi/3 & -\sin \pi/3 & 0\\ \sin \pi/3 & \cos \pi/3 & 0\\ 0 & 0 & 1 \end{bmatrix}
$$

(b) We want $b_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ (fixed under rotation) and b_1, b_2 in a plane orthogonal to b_3 , orthogonal to each other and of length 1, e.g.,

 $b_1 =$ $\frac{1}{\sqrt{2}}$ 5 $\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$ $\bigg],b_2 =$ $\frac{1}{\sqrt{2}}$ 70 $\left[\begin{array}{c} 3 \\ 6 \\ -5 \end{array}\right]$ (the normalized vector for $b_3 \times b_1$).

Note that the basis b_1, b_2, b_3 is right-handed since $b_1 \times b_2$ points in direction of *b*₃. For $B = (b_1, b_2, b_3)$ the matrix $s_{B \leftarrow B}$ is equal to *A* from (a).

(c) To get the standard matrix $s_{E \leftarrow E}$ from $s_{B \leftarrow B}$ we need to multiply with change of coordinate matrices: let

$$
P_{E \leftarrow B} = [b_1, b_2, b_3] =: F
$$

be the matrix with vectors b_1, b_2, b_3 in its columns. Then

$$
s_{E \leftarrow E} = P_{E \leftarrow B} s_{B,B} P_{E \leftarrow B} = P \cdot A \cdot P^{-1}
$$

(8) The *kernel* of a linear map $h: V \to W$ is the subspace of V,

$$
\ker h := \{ v \in V \mid h(v) = 0 \}.
$$

- (a) Determine the kernel and the image of $d: P_3 \to P_3, p \to p'$.
- (b) Is *d* injective, surjective, bijective?

Solution:

(a) $p \in \text{ker } d$ iff $p' = 0$ iff p is a constant polynomial iff p has degree ≤ 0 . Hence

$$
\ker d = P_0.
$$

For $p \in P_3$ we see that p' has degree 2, hence $p' \in P_2$. So $d(P_3) \subseteq P_2$. We claim that conversely every $q = a_0 + a_1x + a_2x^2 \in P_2$ is in $d(P_3)$, that is the derivative of a polynomial *p* of degree 3. Note that $p = a_0 x + \frac{a_1}{2}$ $\frac{a_1}{2}x^2 + \frac{a_2}{3}$ $\frac{i_2}{3}x^3$ satisfies $p' = q$. Thus

$$
d(P_3)=P_2.
$$

(b) *d* is not injective since ker $d \neq 0$. *d* is not surjective since $d(P_3) = P_2 \neq P_3$. Hence *d* is not bijective.

Alternatively for (b) one can also compute the nullspace of the matrix $d_{B\leftarrow B}$ to see that ker *d* is not trivial and its column space to see that $d(P_3) \neq P_3$. But for (a) you'd need to translate Nul $d_{B \leftarrow B}$ back to P_0 and Col $d_{B \leftarrow B}$ back to P_2 . □