Math 2135 - Assignment 9

Due November 1, 2024

- (1) Let $b_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $b_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$, $b_3 = \begin{bmatrix} 1 \\ 2 \\ -5 \\ -5 \end{bmatrix}$.
 - (a) Find vectors u_1, \ldots, u_k such that $(b_1, b_2, u_1, \ldots, u_k)$ is a basis for \mathbb{R}^3 .
 - (b) Find vectors v_1, \ldots, v_ℓ such that $(b_3, v_1, \ldots, v_\ell)$ is a basis for \mathbb{R}^3 .
 - Prove that your choices for (a) and (b) form a basis.
- (2) A 25×35 matrix A has 20 pivots. Find dim Nul A, dim Col A, dim Row A, and rank A.
- (3) True or false? Explain.
 - (a) A basis of B is a set of linear independent vectors in V that is as large as possible.
 - (b) If dim V = n, then any n vectors that span V are linearly independent.
 - (c) Every 2-dimensional subspace of \mathbb{R}^2 is a plane.
- (4) Let P_3 the vector space of polynomials of degree ≤ 3 over \mathbb{R} with basis B = $(1, x, x^2, x^3).$

 - (a) Find the matrix $d_{B\leftarrow B}$ for the derivation map $d: P_3 \to P_3, p \to p'$. (b) Use $d_{B\leftarrow B}$ to compute $[p']_B$ and p' for the polynomial p with $[p]_B = (-3, 2, 0, 1)$.

(5) Let $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $C = \begin{pmatrix} 2 \\ 5 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ be bases of \mathbb{R}^2 , let E be the standard basis of \mathbb{R}^2 .

- (a) Find the change of coordinates matrix $P_{E\leftarrow B}$ for $f: [u]_B \mapsto [u]_E$.
- (b) Find the change of coordinates matrix $P_{C\leftarrow E}$ for $g: [u]_E \mapsto [u]_C$.
- (c) Find the change of coordinates matrix $P_{C \leftarrow B}$ for $h: [u]_B \mapsto [u]_C$. Hint: h is the composition of g and f, $h([u]_B) = g(f([u]_B))$.
- (6) Determine the standard matrix for the reflection t of \mathbb{R}^2 at the line 3x + y = 0 as follows:
 - (a) Find a basis B of \mathbb{R}^2 whose vectors are easy to reflect.
 - (b) Give the matrix $t_{B\leftarrow B}$ for the reflection with respect to the coordinate system determined by B.
 - (c) Use the change of coordinate matrix to compute the standard matrix $t_{E\leftarrow E}$ with respect to the standard basis $E = (e_1, e_2)$.
- (7) (a) Determine the standard matrix A for the rotation r of \mathbb{R}^3 around the z-axis through the angle $\pi/3$ counterclockwise. Hint: Use the matrix for the rotation around the origin in \mathbb{R}^2 for the *xy*-plane. What happens to e_3 under this rotation?
 - (b) Consider the rotation s of \mathbb{R}^3 around the line spanned by $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ through the angle $\pi/3$ counterclockwise. Find a basis of \mathbb{R}^3 for which the matrix $s_{B\leftarrow B}$ is equal to A from (a).
 - (c) Give the standard matrix $s_{E\leftarrow E}$ for the standard basis E (You do not need to actually multiply and invert the involved matrices; the product formula is enough).
- (8) The kernel of a linear map $h: V \to W$ is the subspace of V,

$$\{v \in V \mid h(v) = 0\}.$$

- (a) Determine the kernel and the image of $d: P_3 \to P_3, p \to p'$.
- (b) Is d injective, surjective, bijective?