Math 2135 - Assignment 8

Due October 25, 2024

(1) Show that the vectors $\mathbf{v}_0 = 1$, $\mathbf{v}_1 = 1 + t$, $\mathbf{v}_2 = 1 + t + t^2$ form a basis for the vector space P_2 of polynomials of degree ≤ 2 . **Solution:**

For the linear independence of \mathbf{v}_0 , \mathbf{v}_1 , \mathbf{v}_2 consider the equation

$$
x_0 + x_1(1+t) + x_2(1+t+t^2) = 0
$$

at distinct values for t , e.g., $t = 0, 1, 2$ to obtain the linear system

$$
x_0 + x_1 + x_2 = 0
$$

$$
x_0 + 2x_1 + 3x_2 = 0
$$

$$
x_0 + 3x_1 + 7x_2 = 0
$$

This only has the trivial solution $x_0 = x_1 = x_2 = 0$. So 1*, t, t*² are linearly independent.

To see that $\text{Span}(\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2) = P_2$ show that for every polynomial $a + bt + ct^2 \in P_2$

$$
x_0 + x_1(1+t) + x_2(1+t+t^2) = a + bt + ct^2
$$

has solutions $x_0, x_1, x_2 \in \mathbb{R}$. For this we compare the coefficients of the polynomials in that equation and try to solve the resulting linear system:

\n constants: \n
$$
x_0 + x_1 + x_2 = a
$$
\n coefficient of \n $t: \quad x_1 + x_2 = b$ \n coefficient of \n $t^2: \quad x_2 = c$ \n

This has the solution $x_2 = c, x_1 = b - c, x_0 = a - b$. Hence any polynomial $a + bt + ct^2$ is in Span(\mathbf{v}_0 , \mathbf{v}_1 , \mathbf{v}_2).

Since $\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2$ is linear independent and spans P_2 , it is a basis of P_2 . □

(2) Give a basis for $\text{Nul}(A)$ and a basis for $\text{Col}(A)$ for

$$
A = \begin{bmatrix} 0 & 2 & 0 & 3 \\ 1 & -4 & -1 & 0 \\ -2 & 6 & 2 & -3 \end{bmatrix}
$$

Solution:

Nul *A* is the solution set of $Ax = 0$. So we row reduce *A*

$$
A = \begin{bmatrix} 0 & 2 & 0 & 3 \\ 1 & -4 & -1 & 0 \\ -2 & 6 & 2 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & -4 & -1 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & -2 & 0 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & -4 & -1 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

to get the solution $x_4 = t, x_3 = s$ (both free), $x_2 = -\frac{3}{2}$ $\frac{3}{2}t, x_1 = s - 6t$. So

$$
x = s \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -6 \\ -\frac{3}{2} \\ 0 \\ 1 \end{bmatrix} \text{ and Null } A \text{ has basis } (\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -6 \\ -\frac{3}{2} \\ 0 \\ 1 \end{bmatrix})
$$

For a basis of the column space Col*A* we pick the pivot columns of *A*, i.e., the first and second column. So Col*A* has basis (\lceil $\overline{}$ 0 1 −2 1 *,* $\sqrt{ }$ $\Big\}$ 2 −4 6 1 \Box).

(3) Give 2 different bases for

$$
H = \text{Span}\left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 4 \end{bmatrix} \right\}
$$

Solution:

Row reduction yields

$$
\begin{bmatrix} 1 & 3 & -1 \\ 1 & -1 & 3 \\ 2 & 0 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -1 \\ 0 & -4 & 4 \\ 0 & 0 & 0 \end{bmatrix}.
$$

So the first 2 columns of the original matrix are pivot columns and form a basis of *H*.

$$
B_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}
$$

Recall that the order of basis vectors is important (coordinates!). So by flipping the vectors we get a different basis

$$
B_2 = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}
$$

Also note that any 2 columns of the matrix are linearly independent. So any 2 distinct vectors in any order out of { $\sqrt{ }$ \vert 1 1 2 1 *,* $\sqrt{ }$ $\overline{}$ 3 −1 0 1 *,* $\sqrt{ }$ $\overline{}$ -1 3 4 1 $\Big\}$ form a basis. \Box

- (4) Let $B = (b_1, \ldots, b_n)$ be a basis for a vector space V and consider the coordinate mapping $V \to \mathbb{R}^n$, $x \mapsto [x]_B$.
	- (a) Show that $[c \cdot x]_B = c[x]_B$ for all $x \in V, c \in \mathbb{R}$.
	- (b) Show that the coordinate mapping is onto \mathbb{R}^n .

Solution:

(a) Let
$$
x \in V
$$
 with $x = c_1b_1 + \dots c_nb_n$ for $c_1, \dots, c_n \in \mathbb{R}$. That is, $[x]_B = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$.

Let $c \in \mathbb{R}$ and consider

$$
cx = c(c_1b_1 + \dots c_nb_n) = cc_1b_1 + \dots cc_nb_n.
$$

Then the coordinates of *cx* are

$$
[cx]_B = \begin{bmatrix} cc_1 \\ \vdots \\ cc_n \end{bmatrix} = c \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = c[x]_B.
$$

- (b) To show the map is onto \mathbb{R}^n , let $y =$ $\sqrt{ }$ $\begin{array}{c} \hline \end{array}$ *y*1 . . . *yn* 1 $\overline{}$ ∈ R *n* . We have to find *x* ∈ *V* such that $[x]_B = y$. Pick $x = y_1b_1 + \ldots y_nb_n$. This shows that the coordinate map is onto. \Box
- (5) Let $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ −2 1 *,* $\left[-3\right]$ 4) be a basis of \mathbb{R}^2 . (a) Find vectors $u, v \in \mathbb{R}^2$ with $[u]_B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 1 $, [v]_B =$ $\left\lceil 3 \right\rceil$ 2 1 . (b) Compute the coordinates relative to B of $w =$ $\lceil -2 \rceil$ 4 1 and $x =$ $\left\lceil \frac{1}{2} \right\rceil$ θ 1 . **Solution:**
	- (a) Put the vectors of *B* in the columns of a matrix,

$$
P_{E \leftarrow B} = \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}
$$

$$
u = P_{E \leftarrow B} \cdot [u]_B = \begin{bmatrix} -3 \\ 4 \end{bmatrix},
$$
 the second vector in B

$$
v = \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}
$$

To find [w]_B we can solve $P_{E \leftarrow B} \cdot [w]_B = w$ direc

(b) To find $[w]_B$ we can solve $P_{E \leftarrow B} \cdot [w]_B = w$ directly by row reduction. Alternatively, we can invert $P_{E \leftarrow B}$ and use the formula $[w]_B = P_{E \leftarrow B}^{-1} \cdot w$.

$$
P_{E \leftarrow B}^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}
$$

So

$$
[w]_B = \frac{1}{-2} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 4 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}
$$

$$
[x]_B = \frac{1}{-2} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}
$$

(6) Let $B = (1, t, t^2)$ and $C = (1, 1 + t, 1 + t + t^2)$ be bases of \mathbb{P}_2 .

- (a) Determine the polynomials p, q with $[p]_B =$ $\sqrt{ }$ \vert 3 0 −2 1 | and $[q]_C$ = $\sqrt{ }$ $\begin{array}{c} \hline \end{array}$ 3 0 −2 1 $\vert \cdot$ (b) Compute $[r]_B$ and $[r]_C$ for $r = 3 + 2t + t^2$. **Solution:**
- (a) $p = 3 2t^2$, $q = 3 \cdot 1 + 0 \cdot (1 + t) - 2(1 + t + t^2) = 1 - 2t - 2t^2$ (b) For the coordinates relative to B just take the coefficients of the polynomial: $[r]_B =$ \lceil $\Big\}$ 3 2 1 1 $\overline{}$

For the coordinates relative to *C* consider the equation

$$
r = x_1 \cdot 1 + x_2(1+t) + x_3(1+t+t^2)
$$

= $(x_1 + x_2 + x_3) + (x_2 + x_3)t + x_3t^2$

Comparing the coefficients we obtain $x_3 = 1, x_2 = 1, x_1 = 1$. So $[r]_C =$ $\sqrt{ }$ $\Big\}$ 1 1 1 1 **口**.

(7) Let

$$
A = \begin{bmatrix} -5 & 8 & 0 & -17 & -2 \\ 3 & -5 & 1 & 5 & 1 \\ 11 & -19 & 7 & 1 & 3 \\ 7 & -13 & 5 & -3 & 1 \end{bmatrix}.
$$

Find bases and dimensions for Nul *A*, Col *A*, and Row *A*, respectively. **Solution:**

We reduce *A* to reduced echelon form:

$$
A \sim \cdots \sim \begin{bmatrix} 1 & 0 & 0 & 5 & 2 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
$$

For Nul *A*, we solve A **x** = **0** and obtain

$$
\text{Nul } A = \{r \begin{bmatrix} -5 \\ -1 \\ 5 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \mid r, s \in \mathbb{R} \}.
$$

The two vectors form a basis for Nul *A*.

The first three columns of *A* contain a pivot. Thus they form a basis

$$
B = \begin{pmatrix} -5 \\ 3 \\ 11 \\ 7 \end{pmatrix}, \begin{bmatrix} 8 \\ -5 \\ -19 \\ -13 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 7 \\ 5 \end{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 7 \\ 5 \end{pmatrix}
$$

for Col *A*.

The nonzero rows in any echelon form of *A* form a basis. E.g.,

$$
C = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 5 \\ 2 \end{pmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -5 \\ 0 \end{bmatrix} \big)
$$

is a basis for Row *A*. \Box

(8) True or false? Explain.

- (a) If *B* is an echelon form of a matrix *A*, then the pivot columns of *B* form a basis for the column space of *A*.
- (b) If *B* is an echelon form of a matrix *A*, then the nonzero rows of *B* form a basis for the row space of *A*.

Solution:

- (a) False! In general the columns of *B* will not span Col *A* any more. The pivot columns of *A* form a basis for Col *A*.
- (b) True. The rows of *B* still span Row *A*.

 \Box