Math 2135 - Assignment 8

Due October 25, 2024

- (1) Show that the vectors $\mathbf{v}_0 = 1$, $\mathbf{v}_1 = 1 + t$, $\mathbf{v}_2 = 1 + t + t^2$ form a basis for the vector space P_2 of polynomials of degree ≤ 2 .
- (2) Give a basis for Nul(A) and a basis for Col(A) for

$$A = \begin{bmatrix} 0 & 2 & 0 & 3 \\ 1 & -4 & -1 & 0 \\ -2 & 6 & 2 & -3 \end{bmatrix}$$

(3) Give 2 different bases for

$$H = \operatorname{Span}\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\-1\\0 \end{bmatrix}, \begin{bmatrix} -1\\3\\4 \end{bmatrix} \right\}$$

- (4) Let $B = (b_1, \ldots, b_n)$ be a basis for a vector space V and consider the coordinate mapping $V \to \mathbb{R}^n, x \mapsto [x]_B$.
 - (a) Show that $[c \cdot x]_B = c[x]_B$ for all $x \in V, c \in \mathbb{R}$.
 - (b) Show that the coordinate mapping is onto \mathbb{R}^n .
- (5) Let $B = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{bmatrix} -3 \\ 4 \end{bmatrix}$ be a basis of \mathbb{R}^2 .
 - (a) Find vectors $u, v \in \mathbb{R}^2$ with $[u]_B = \begin{bmatrix} 0\\1 \end{bmatrix}, [v]_B = \begin{bmatrix} 3\\2 \end{bmatrix}$.
 - (b) Compute the coordinates relative to B of $w = \begin{bmatrix} -2\\ 4 \end{bmatrix}$ and $x = \begin{bmatrix} 1\\ 0 \end{bmatrix}$.
- (6) Let $B = (1, t, t^2)$ and $C = (1, 1 + t, 1 + t + t^2)$ be bases of \mathbb{P}_2 . (a) Determine the polynomials p, q with $[p]_B = \begin{bmatrix} 3\\0\\-2 \end{bmatrix}$ and $[q]_C = \begin{bmatrix} 3\\0\\-2 \end{bmatrix}$.

(b) Compute $[r]_B$ and $[r]_C$ for $r = 3 + 2t + t^2$ (7) Let

$$A = \begin{bmatrix} -5 & 8 & 0 & -17 & -2 \\ 3 & -5 & 1 & 5 & 1 \\ 11 & -19 & 7 & 1 & 3 \\ 7 & -13 & 5 & -3 & 1 \end{bmatrix}.$$

Find bases and dimensions for Nul A, Col A, and Row A, respectively. (8) True or false? Explain.

- (a) If B is an echelon form of a matrix A, then the pivot columns of B form a basis for the column space of A.
- (b) If B is an echelon form of a matrix A, then the nonzero rows of B form a basis for the row space of A.
- (c) If $\dim V = n$, then any *n* vectors that span *V* are linearly independent.
- (d) Every 2-dimensional subspace of \mathbb{R}^3 is a plane.