Math 2135 - Assignment 7

Due October 18, 2024

- (1) Explain why the following are not subspaces of \mathbb{R}^2 . Give explicit counter examples for subspace properties that are not satisfied.
	- $(a) U = \{$ $\lceil x \rceil$ *y* $\Big| \mid x, y \in \mathbb{R}, x \geq 0 \}$ (b) $V = \mathbb{Z}^{\mathbb{Z}^{-}}$ (\mathbb{Z} denotes the set of all integers) (c) $W = \{$ $\lceil x \rceil$ *y* $\Big| \, | \, x, y \in \mathbb{R}, |x| = |y| \}$ **Solution:**

(a) Not closed under scalar multiples, e.g. $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 $\Big\} \in U$ but $(-1) \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 1 ̸∈ *U* (b) Not closed under scalar multiples, e.g. $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\overline{0}$ $\bar{x} \in V$ but $\sqrt{2}$ $\lceil 1 \rceil$ $\overline{0}$ 1 ̸∈ *V* (c) Not closed under addition, e.g. $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 1 *,* $\lceil 1 \rceil$ −1 $\Big] \in W$ but $\Big[\frac{1}{1} \Big]$ 1 1 $+$ $\lceil 1 \rceil$ −1 1 ̸∈ *W* □

(2) Which of the following are subspaces of the vector space $\mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\}\$ of all functions from $\mathbb R$ to $\mathbb R$? Check all subspace properties or give one that is not satisfied.

- (a) $\{f : \mathbb{R} \to \mathbb{R} \mid f(0) = 1\}$
- (b) ${f : \mathbb{R} \to \mathbb{R} \mid f(3) = 0}$
- (c) $\{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}\$

Solution:

- (a) No subspace since it does not contain the zero vector, i.e., the constant 0 function.
- (b) Subspace since (1) contains the constant 0-function, (2) is closed under addition [for functions f, g with $f(1) = 0$ and $g(1) = 0$, also $(f+g)(1) = 0+0 = 0$], (3) is closed under scalar multiples [if $c \in \mathbb{R}$ and $f(1) = 0$, then also $(cf)(0) = c0 = 0$].
- (c) Subspace since (1) the constant 0-function is continuous, (2) the sum of continuous functions is continuous, (3) any scalar multiple of a continuos function is continuous.

□

(3) Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be vectors in a vector space *V*. Show that $U := \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a subspace of *V* .

Solution:

We show the 3 conditions for being a subspace.

(a) The zero vector can be written as linear combination $\mathbf{0} = 0\mathbf{v}_1 + \ldots + 0\mathbf{v}_n$. Thus $0 \in U$.

(b) Let **u** and **w** be arbitary vectors in *U*. We can write these vectors as

$$
\mathbf{u} = a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n \quad \text{for some } a_1, \ldots, a_n \in \mathbb{R},
$$

$$
\mathbf{w} = b_1 \mathbf{v}_1 + \ldots + b_n \mathbf{v}_n \quad \text{for some } b_1, \ldots, b_n \in \mathbb{R}.
$$

Now

$$
\mathbf{u} + \mathbf{w} = a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n + b_1 \mathbf{v}_1 + \ldots + b_n \mathbf{v}_n
$$

= $(a_1 + b_1)\mathbf{v}_1 + \ldots + (a_n + b_n)\mathbf{v}_n$.

Thus $\mathbf{u} + \mathbf{w}$ is spanned by $\mathbf{v}_1, \ldots, \mathbf{v}_n$ and hence an element of U.

(c) Let $\mathbf{u} \in U$ as above, and let $r \in \mathbb{R}$. Then

$$
r\mathbf{u} = r(a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n)
$$

= $ra_1\mathbf{v}_1 + \dots + ra_n\mathbf{v}_n$.

Thus r**u** is spanned by $\mathbf{v}_1, \ldots, \mathbf{v}_n$ and hence an element of U.

□

(4) Let $A \in \mathbb{R}^{m \times n}$. Prove that $\text{Nul}(A)$ is a subspace of \mathbb{R}^n . **Solution:**

We show the 3 conditions for being a subspace.

- (a) The zero vector is clearly in $\text{Nul}(A)$ since $A\mathbf{0} = \mathbf{0}$.
- (b) Let **u** and **w** be arbitary vectors in Nul(*A*). Then A **u** = **0** and A **w** = **0**. We show that $\mathbf{u} + \mathbf{w}$ is in Nul(*A*).

$$
A({\bf u} + {\bf w}) = A{\bf u} + A{\bf w} = {\bf 0} + {\bf 0} = {\bf 0}.
$$

So $\mathbf{u} + \mathbf{w}$ is in Nul(*A*).

(c) Let $r \in \mathbb{R}$. Then

$$
A(r\mathbf{u}) = r(A\mathbf{u}) = r\mathbf{0} = \mathbf{0}.
$$

Hence $r\mathbf{u}$ is in $\mathrm{Nul}(A)$.

□

- (5) Explain whether the following are true or false (give counter examples if possible):
	- (a) Every vector space is a subspace of itself.
	- (b) Each plane in \mathbb{R}^3 is a subspace.
	- (c) Let *U* be a subspace of a vector space *V* . Any linear combination of vectors of *U* is also in *V* .
	- (d) Let v_1, \ldots, v_n be in a vector space *V*. Then $Span(v_1, \ldots, v_n)$ is the smallest subspace of *V* containing v_1, \ldots, v_n .

Solution:

- (a) True, since it contains zero vector, is closed under addition and scalar multiples.
- (b) False, e.g., the plane $z = 1$ does not contain the zero vector.
- (c) True, since *U* is closed under under addition and scalar multiples by definition, *U* is also closed under linear combinations.
- (d) True, by (c) every subspace of *V* containing v_1, \ldots, v_n also contains $\text{Span}(v_1, \ldots, v_n)$ which is a subspace by a previous HW-problem. So $Span(v_1, \ldots, v_n)$ is the smallest subspace of *V* containing v_1, \ldots, v_n .

3

□

(6) Are the vectors $\mathbf{v}_0 = 1$, $\mathbf{v}_1 = t$, $\mathbf{v}_2 = t^2$ in the vector space $\mathbb{R}^{\mathbb{R}} := \{f : \mathbb{R} \to \mathbb{R}\}\$ linearly independent?

Solution:

Yes, for real numbers x_0, x_1, x_2 the polynomial $x_0 + x_1t + x_2t^2$ is equal to the constant 0-function iff $x_0 = x_1 = x_2 = 0$.

Alternatively, consider the equation

$$
x_0 + x_1 t + x_2 t^2 = 0
$$

at distinct values for t , e.g., $t = 0, 1, 2$ to obtain the linear system

$$
x_0 + 0x_1 + 0^2 x_2 = 0
$$

\n
$$
x_0 + 1x_1 + 1^2 x_2 = 0
$$

\n
$$
x_0 + 2x_1 + 2^2 x_2 = 0
$$

This only has the trivial solution $x_0 = x_1 = x_2 = 0$. So $1, t, t^2$ are linearly independent. \Box

(7) Which of the following are bases of \mathbb{R}^3 ? Why or why not?

$$
A = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, B = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}, C = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}
$$

Solution:

A is not a basis because 2 vectors can at most span a plane but not all of \mathbb{R}^3 .

To check whether B is a basis we have to see whether it spans \mathbb{R}^3 . Row reduce

Since we have a 0-row, the vectors in B do not span \mathbb{R}^3 . Hence B is not a basis.

To check whether C is a basis we have to see whether it spans \mathbb{R}^3 . Row reduce

$$
\begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & 1 \\ 0 & 4 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 8 \end{bmatrix}
$$

The echelon form has no 0-row. So C spans \mathbb{R}^3 . Further we see from the echelon form that *C* is linearly independent. So *C* is a basis. \Box