Math 2135 - Assignment 7

Due October 18, 2024

- (1) Explain why the following are not subspaces of \mathbb{R}^2 . Give explicit counter examples for subspace properties that are not satisfied.
 - (a) $U = \{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x, y \in \mathbb{R}, x \ge 0 \}$ (b) $V = \mathbb{Z}^2$ (\mathbb{Z} denotes the set of all integers)

 - (c) $W = \{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x, y \in \mathbb{R}, |x| = |y| \}$
- (2) Which of the following are subspaces of the vector space $\mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\}$ of all functions from \mathbb{R} to \mathbb{R} ? Check all subspace properties or give one that is not satisfied.
 - (a) $\{f : \mathbb{R} \to \mathbb{R} \mid f(0) = 1\}$
 - (b) $\{f : \mathbb{R} \to \mathbb{R} \mid f(3) = 0\}$
 - (c) $\{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}$
- (3) Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be vectors in a vector space V. Show that $U := \mathrm{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a subspace of V.
- (4) Let $A \in \mathbb{R}^{m \times n}$. Prove that Nul(A) is a subspace of \mathbb{R}^n .
- (5) Explain whether the following are true or false (give counter examples if possible):
 - (a) Every vector space is a subspace of itself.
 - (b) Each plane in \mathbb{R}^3 is a subspace.
 - (c) Let U be a subspace of a vector space V. Any linear combination of vectors of U is also in V.
 - (d) Let v_1, \ldots, v_n be in a vector space V. Then $\mathrm{Span}(v_1, \ldots, v_n)$ is the smallest subspace of V containing v_1, \ldots, v_n .
- (6) Are the vectors $\mathbf{v}_0 = 1$, $\mathbf{v}_1 = t$, $\mathbf{v}_2 = t^2$ in the vector space $\mathbb{R}^{\mathbb{R}} := \{f : \mathbb{R} \to \mathbb{R}\}$ linearly independent?
- (7) Which of the following are bases of \mathbb{R}^3 ? Why or why not?

$$A=(\begin{bmatrix}1\\2\\0\end{bmatrix},\begin{bmatrix}2\\3\\4\end{bmatrix}),B=(\begin{bmatrix}1\\2\\0\end{bmatrix},\begin{bmatrix}2\\3\\4\end{bmatrix},\begin{bmatrix}0\\-1\\4\end{bmatrix}),C=(\begin{bmatrix}1\\2\\0\end{bmatrix},\begin{bmatrix}2\\3\\4\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix})$$

(8) Give a basis for Nul(A) and a basis for Col(A) for

$$A = \begin{bmatrix} 0 & 2 & 0 & 3 \\ 1 & -4 & -1 & 0 \\ -2 & 6 & 2 & -3 \end{bmatrix}$$