Math 2135 - Assignment 6

Due October 11, 2024

(1) Compute the inverse if possible:

$$
A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -3 & 2 & 4 \\ 0 & 1 & -2 \\ 1 & -3 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ -1 & 2 & -1 \end{bmatrix}
$$

Solution: Since *A* is not square, it does not have an inverse. Row reduce [*B, I*3]:

$$
\begin{bmatrix} -3 & 2 & 4 & 1 & 0 & 0 \ 0 & 1 & -2 & 0 & 1 & 0 \ 1 & -3 & 4 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 4 & 0 & 0 & 1 \ 0 & 1 & -2 & 0 & 1 & 0 \ -3 & 2 & 4 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 4 & 0 & 0 & 1 \ 0 & 1 & -2 & 0 & 1 & 0 \ 0 & -7 & 16 & 1 & 0 & 3 \end{bmatrix}
$$

$$
\sim \begin{bmatrix} 1 & 0 & -2 & 0 & 3 & 1 \ 0 & 1 & -2 & 0 & 1 & 0 \ 0 & 0 & 2 & 1 & 7 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 10 & 4 \ 0 & 1 & 0 & 1 & 8 & 3 \ 0 & 0 & 1 & 1/2 & 7/2 & 3/2 \end{bmatrix}
$$
So
$$
B^{-1} = \begin{bmatrix} 1 & 10 & 4 \ 1 & 8 & 3 \ 1/2 & 7/2 & 3/2 \end{bmatrix}.
$$
For C^{-1} find the reduced echelon form of $[C, I_3]$:

$$
\begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 & 1 & 0 \ -1 & 2 & -1 & 0 & 0 & 1 \ \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 & 1 & 0 \ 0 & 2 & 2 & 1 & 0 & 1 \ \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & -2 & 1 \ \end{bmatrix}
$$

Since the echelon form of *C* has a zero row, *C* is not invertible. \Box

(2) Let $A, B \in \mathbb{R}^{n \times n}$ be invertible. Show $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$. **Solution:** Multiplication yields $AB \cdot B^{-1}A^{-1} = A \cdot I_n \cdot A^{-1} = I_n$. Hence $B^{-1} \cdot A^{-1}$ is the inverse of AB .

 θ

 $\overline{}$

□

- (3) A matrix $C \in \mathbb{R}^{n \times m}$ is called a **left inverse** of a matrix $A \in \mathbb{R}^{m \times n}$ if $CA = I_n$ (the $n \times n$ identity matrix).
	- (a) Show that if *A* has a left inverse *C*, then $Ax = b$ has a unique solution for any $b \in \mathbb{R}^n$.

(b) Give an example of a matrix *A* that has a left inverse but is not invertible. **Solution:**

- (a) Multiply $Ax = b$ by *C* on the left to get $Cb = CAx = I_nx = x$. Hence $x = Cb$ is the unique solution of $Ax = b$.
- (b) E.g. $A =$ $\lceil 1 \rceil$ 0 1 has the left inverse $C = [1 \ 0]$ since $CA = [1]$. Still A is not invertible because there is no right inverse *B* such that $AB = I_2$ (alternatively because *A* is not square).

 (4) Prove that $A =$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is not invertible if $ad - bc = 0$. Hint: Show that the columns of *A* are linearly dependent. Consider the cases $a = 0$ and $a \neq 0$ separately.

Solution: Assume $ad - bc = 0$.

Case, $a = 0$: Then $bc = 0$ yields $b = 0$ or $c = 0$. Hence

$$
A = \begin{bmatrix} 0 & 0 \\ c & d \end{bmatrix}
$$
 or
$$
A = \begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix}.
$$

Either way, the columns of *A* are linearly dependent. Case, $a \neq 0$: Then $d = \frac{bc}{a}$ $\frac{bc}{a}$. Hence

$$
A = \begin{bmatrix} a & b \\ c & \frac{bc}{a} \end{bmatrix}
$$

and the second column is $\frac{b}{a}$ times the first column. Hence the columns of *A* are linearly dependent.

By the Inverse Matrix Theorem, a matrix with linearly dependent columns is not invertible. □

(5) Let *A* be an **upper triangular matrix**, that is,

$$
A = \begin{bmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix}
$$

with zeros below the diagonal. Show

(and *A* not invertible).

- (a) *A* is invertible iff there are no zeros in the diagonal of *A*.
- (b) If *A*[−]¹ exists, it is an upper triangular matrix as well. Hint: When row reducing $[A, I_n]$ to $[I_n, A^{-1}]$, what happens to the *n* columns on the right?

Solution:

- (a) By the Invertible Matrix Theorem *A* is invertible iff the columns of *A* are linearly independent. If the triangular matrix *A* has no zero diagonal entries, then *A* is actually in echelon form and its columns are linearly independent (hence *A* is invertible). Conversely if a diagonal entry of *A* is 0, then there is no pivot in this column of the echelon form of *A*. Hence the columns of *A* are not linearly independent
- (b) When row reducing $[A, I_n]$ to $[I_n, A^{-1}]$, we only need to obtain ones in the diagonal of *A* (by scaling rows) and zeros above the diagonal of *A* (by adding multiples of one row to rows above). These operations transform I_n into an upper triangular matrix *A*[−]¹ .

□

(6) Assume that $f: \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto A \cdot x$, is bijective. Show that $A \in \mathbb{R}^{n \times n}$ is invertible.

Give a formula for the inverse function f^{-1} .

Hint: Use that *f* is surjective and the Invertible Matrix Theorem.

Solution: Since f is onto, Col $A = F^n$. Since the *n* columns of A span F^n , they form a basis of $Fⁿ$ by the Basis Theorem. But if the columns of A form a basis, then *A* is invertible by the Invertible Matrix Theorem.

 $f^{-1}: F^n \to F^n$, $x \mapsto A^{-1} \cdot x$, which can be verified by composing $x \to A^{-1}x$ with $f: x \to Ax$ and observing that one gets the identity function on F^n \Box

(7) (a) What is the inverse of the rotation *R* by angle α counter clockwise around the origin in \mathbb{R}^2 ? What is the standard matrix of R^{-1} ?

(b) What is the inverse of a reflection S on a line through the origin in \mathbb{R}^2 ? What can you say about the standard matrix *B* of *S* and its inverse? You do not have to write down *B* for this.

Solution:

(a) R^{-1} is just the rotation by α clockwise (or by $-\alpha$ counter clockwise). *R* has standard matrix .
 \overline{r}

$$
A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}
$$

and R^{-1} has standard matrix

$$
A^{-1} = \frac{1}{\cos \alpha^2 + \sin \alpha^2} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) \\ \sin(-\alpha) & \cos(-\alpha) \end{bmatrix}
$$

(b) Reflecting twice puts every point *x* back to itself. Hence any reflection is its own inverse, $S^{-1} = S$. the standard matrix *B* of *S* also satisfies $B^{-1} = B$.

□

- (8) True of false? Explain your answer.
	- (a) If *A, B* are square matrices with $AB = I_n$, then *A* and *B* are invertible.
	- (b) If *A* is invertible, then A^T is invertible.
	- (c) Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$ such that $Ax = b$ is inconsistent. Then $\mathbb{R}^n \to$ \mathbb{R}^n , $x \mapsto Ax$ is not injective.

Solution:

- (a) True. By the Invertible Matrix Theorem $A^{-1} = B$ and $B^{-1} = A$.
- (b) True. Recall that $(AB)^{T} = B^{T}A^{T}$. Hence $(A^{-1})^{T}$ is the inverse of A^{T} .
- (c) True. If $Ax = b$ is inconsistent, then A does not have a pivot in every row. Since *A* is square, this means that it does not have a pivot in every column either. So $x \mapsto Ax$ is not injective.

□