Math 2135 - Assignment 5

Due October 4, 2024

Problems 1-5 are review material for the first midterm on October 2. Solve them before Wednesday!

(1) Let

$$
A = \begin{bmatrix} 0 & 3 & 1 & 2 \\ 1 & 4 & 0 & 7 \\ 2 & -1 & -3 & 8 \end{bmatrix}, b = \begin{bmatrix} 6 \\ 5 \\ -8 \end{bmatrix}
$$

(a) Give the solution for $Ax = b$ in parametrized vector form.

(b) Give vectors that span the null space of *A*.

Solution: (a) Row reduce the augmented matrix

$$
[A b] = \begin{bmatrix} 0 & 3 & 1 & 2 & 6 \\ 1 & 4 & 0 & 7 & 5 \\ 2 & -1 & -3 & 8 & -8 \end{bmatrix}
$$
 (flip rows 1 and 2 to eliminate in first column)
\n
$$
\rightarrow \begin{bmatrix} 1 & 4 & 0 & 7 & 5 \\ 0 & 3 & 1 & 2 & 6 \\ 2 & -1 & -3 & 8 & -8 \end{bmatrix}
$$
 (add (-2)*row 1 to row 3)
\n
$$
\rightarrow \begin{bmatrix} 1 & 4 & 0 & 7 & 5 \\ 0 & 3 & 1 & 2 & 6 \\ 0 & -9 & -3 & -6 & -18 \end{bmatrix}
$$
 (add 3*row 2 to row 3)
\n
$$
\rightarrow \begin{bmatrix} 1 & 4 & 0 & 7 & 5 \\ 0 & 3 & 1 & 2 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

Now $x_4 = t$ and $x_3 = s$ for $s, t \in \mathbb{R}$ are free. Next

$$
3x_2 + s + 2t = 6
$$
 yields $x_2 = 2 - \frac{1}{3}s - \frac{2}{3}t$

Finally

$$
x_1 + 4(2 - \frac{1}{3}s - \frac{2}{3}t) + 0s + 7t = 5
$$
 yields $x_1 = -3 + \frac{4}{3}s - \frac{13}{3}t$

Separating the solution into the constant part, multiples of *s* and of *t* yields the parametrized vector form

$$
x = \begin{bmatrix} -3 \\ 2 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 4/3 \\ -1/3 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -13/3 \\ -2/3 \\ 0 \\ 1 \end{bmatrix} \text{ for } s, t \in \mathbb{R}
$$

(b) Note that $p = (-3, 2, 0, 0)^T$ above is a particular solution of $Ax = b$ and that

$$
s \begin{bmatrix} 4/3 \\ -1/3 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -13/3 \\ -2/3 \\ 0 \\ 1 \end{bmatrix} \text{ for } s, t \in \mathbb{R}
$$

is the set of solutions of $Ax = 0$, i.e. the null space of *A*. Hence Nul $A =$ $\text{Span}\{(4/3, -1/3, 1, 0)^T, \, (-13/3, -2/3, 0, 1)^T\}.$

(2) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with

$$
T\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \text{ and } T\begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}.
$$

What is the standard matrix of *T*?

Solution: Solve 2 linear systems to see how to write the unit vectors as linear combinations of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 $\Big]$ and $\Big[3\Big]$ 4 1 ,

$$
e_1 = (-2)\begin{bmatrix} 1 \\ 2 \end{bmatrix} + 1\begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad \qquad e_2 = \frac{3}{2}\begin{bmatrix} 1 \\ 2 \end{bmatrix} - \frac{1}{2}\begin{bmatrix} 3 \\ 4 \end{bmatrix}.
$$

Next use the linearity of *T* to get

$$
T(e_1) = (-2)T(\begin{bmatrix} 1 \\ 2 \end{bmatrix}) + 1T(\begin{bmatrix} 3 \\ 4 \end{bmatrix}) = (-2)\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + 1\begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \\ -4 \end{bmatrix}
$$

$$
T(e_2) = \frac{3}{2} \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 5/2 \end{bmatrix}.
$$

Now the standard matrix of *T* is just

$$
A = [T(e_1) T(e_2)] = \begin{bmatrix} -4 & 3\\ 3 & -2\\ -4 & 5/2 \end{bmatrix}
$$

(3) Let $T: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto Ax$, be a surjective linear map. Show that *T* is injective as well.

Solution: By a Theorem of class, if *T* is surjective, then *A* must have a pivot in every row. Since *A* is square, it then also has a pivot in every column. But that means that the columns of *A* are linearly independent and that *T* is injective by the same Theorem. □

- (4) True or false? Explain your answer.
	- (a) If $Ax = b$ is inconsistent for some vector b, then A cannot have a pivot in every column.
	- (b) If vectors $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent and \mathbf{v}_3 is not in the span of $\mathbf{v}_1, \mathbf{v}_2$, then $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is linear independent.
	- (c) The range of $T: \mathbb{R}^n \to \mathbb{R}^m, x \mapsto Ax$, is the span of the columns of *A*.

Solution:

- (a) False. If $Ax = b$ is inconsistent for some *b*, then the echelon form of A must have a zero row. So *A* cannot have a pivot in the last row. But it can still have pivots in every column if there are more rows than columns.
- (b) True. By a Theorem from class, v_1 , v_2 , v_3 are linearly dependent iff one of the vectors is in the span of the previous vectors. Now assume $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent. Then \mathbf{v}_1 is not 0 and \mathbf{v}_2 is not a multiple of \mathbf{v}_1 . Further assume **v**₃ is not in the span of **v**₁, **v**₂. Then no **v**_{*i*} is in the span of **v**₁*, . . .* , **v**_{*i*-1}. Thus $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent.
- (c) True. Ax is a linear combination of the columns of A, and $T(\mathbb{R}^n)$ is just the set of all these linear combinations, i.e., the span.

□

- (5) (a) Give examples of square matrices *A, B* such that neither *A* nor *B* is 0 (the matrix with all entries 0) but $AB = 0$.
	- (b) If the first two columns of a matrix *B* are equal, what can you say about the columns of *AB*? $\sqrt{ }$ 1 $\sqrt{ }$ 1
	- (c) We can view vectors in \mathbb{R}^n as $n \times 1$ matrices. For $\mathbf{u} =$ \vert 2 −1 3 \vert , \mathbf{v} = \vert $\overline{0}$ 2 1 $\overline{}$

compute $\mathbf{u}^T \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{v}^T$. Interpret the results.

Solution:

- (a) E.g. $A =$ $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, $B =$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Note *AB* is 0 but *BA* is not.
- (b) If \mathbf{b}_i is the *i*-th column of *B*, then $A\mathbf{b}_i$ is the *i*-th column of AB . So if the first two columns of a matrix *B* are equal, then the first two columns of *AB* are equal as well.
- (c) $\mathbf{u}^T \cdot \mathbf{v}$ is a 1 \times 1-matrix but really just the dot-product of the vectors **u** and **v**.

 $\mathbf{u} \cdot \mathbf{v}^T$ is the 3 \times 3-matrix with single entries of **u** and **v** multiplied.

(6) Prove for
$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
 with $ad - bc \neq 0$ that

$$
A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.
$$

Solution: Multiplying
$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
 and $\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ and cancelling $ad - bc$ yields the identity matrix. Hence the given matrix is the inverse of A.

(7) Are the following invertible? Give the inverse if possible.

$$
A = \begin{bmatrix} 2 & 1 \\ 4 & -9 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -3 \\ 4 & -6 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 & 3 \\ 0 & 0 & 1 \\ 0 & -1 & -1 \end{bmatrix}
$$

Solution:

$$
A^{-1} = \frac{1}{2(-9) - 1 \cdot 4} \begin{bmatrix} -9 & -1 \\ -4 & 2 \end{bmatrix}, \quad B^{-1} \text{ does not exist since } 2(-6) - (-3)4 = 0
$$

Since *C* has a zero column, for every matrix *D* the product *DC* has a zero column as well. So *DC* can never be the identity matrix. Thus *C* is not invertible. □

(8) A **diagonal matrix** *A* has all entries 0 except on the diagonal, that is,

$$
A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}.
$$

Under which conditions is A invertible and what is A^{-1} ?

□

Solution: We see that

$$
A^{-1} = \begin{bmatrix} a_{11}^{-1} & 0 & \dots & 0 \\ 0 & a_{22}^{-1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn}^{-1} \end{bmatrix}
$$

is the only choice for the inverse of A, and it exists iff all diagonal entries a_{11}, \ldots, a_{nn} are distinct from 0. \Box