Math 2135 - Assignment 4

Due September 27, 2024

(1) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear map such that

$$
T\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{bmatrix} 2 \\ 0 \\ -3 \end{bmatrix}, \ T\begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}.
$$

- (a) Use linearity to find $T(e_1)$ and $T(e_2)$ for the unit vectors e_1, e_2 in \mathbb{R}^2 .
- (b) Give the standard matrix for *T* and determine *T*($\lceil x \rceil$ *y*) for arbitrary $x, y \in \mathbb{R}$.

Solution:

(a) First write the unit vectors as linear combinations of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 $\Big]$ and $\Big[$ ³ 2 1 . Solve

$$
x\begin{bmatrix} 1 \\ 2 \end{bmatrix} + y \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$

to get $x = -\frac{1}{2}$ $rac{1}{2}$ and $y = \frac{1}{2}$ $\frac{1}{2}$. By the linearity of *T* we obtain

$$
T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = T(-\frac{1}{2}\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} 3 \\ 2 \end{bmatrix})
$$

= $-\frac{1}{2}T(\begin{bmatrix} 1 \\ 2 \end{bmatrix}) + \frac{1}{2}T(\begin{bmatrix} 3 \\ 2 \end{bmatrix})$
= $-\frac{1}{2}\begin{bmatrix} 2 \\ 0 \\ -3 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$
= $\begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$

Similarly we compute that

$$
\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{3}{4} \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 3 \\ 2 \end{bmatrix}
$$

and hence obtain

$$
T\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{3}{4} \begin{bmatrix} 2 \\ 0 \\ -3 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1/2 \\ -5/2 \end{bmatrix}
$$

(b) By (a) we know the standard matrix of *T* is

$$
A = \begin{bmatrix} -2 & 2 \\ 1 & -1/2 \\ 2 & -5/2 \end{bmatrix}.
$$

Thus $T(\begin{bmatrix} x \\ y \end{bmatrix}) = A \cdot \begin{bmatrix} x \\ y \end{bmatrix}.$

(2) Is the following injective, surjective, bijective? What is its range?

$$
T: \mathbb{R}^3 \to \mathbb{R}^2, \ x \mapsto \begin{bmatrix} 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix} \cdot x
$$

Solution: Not injective because x_1 is free in $A \cdot x = 0$. Alternatively, the columns of *A* are linearly dependent. So *T* is not injective (Theorem 12 of Section 1.9).

Surjective because *A* is in row echelon form and has no 0-rows (Theorem 12 of Section 1.9). Hence its range is just its codomain \mathbb{R}^2 .

Bijective means injective and surjective. Hence *T* is not bijective because it is not injective. □

(3) Is the following injective, surjective, bijective?

$$
T: \mathbb{R}^3 \to \mathbb{R}^3, \ x \mapsto \begin{bmatrix} 1 & -1 & 2 \\ -2 & 0 & 1 \\ 3 & -1 & 1 \end{bmatrix} \cdot x
$$

Solution: Row reduce the standard matrix of *T* to get

T is not injective because not every column of the echelon form of *A* has a pivot. In particular x_3 is free in $A \cdot x = 0$.

T is not surjective because the echelon form of *A* has a zero row. Hence $Ax = y$ is not consistent for every $y \in \mathbb{R}^3$.

Since *T* is neither injective nor surjective, it is certainly not bijective. \Box

- (4) True or False? Explain why and correct the false statements to make them true.
	- (a) A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by the images of the unit vectors in \mathbb{R}^n .
	- (b) Not every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(x) = Ax$ for some matrix *A*.
	- (c) The composition of any two linear transformations is linear as well.

Solution:

- (a) True because every vector is a linear combination of unit vectors.
- (b) False. Every linear $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(x) = Ax$ for its standard matrix *A*.
- (c) True. If *S, T* are linear, then

$$
S(T(u + v)) = S(T(u) + T(v)) = S(T(u) + S(T(v)))
$$

for all *u, v* in the domain of *T* and

$$
S(T(cu)) = S(cT(u)) = cS(T(u))
$$

for $c \in \mathbb{R}$. Hence *S* composed with *T* is linear.

(5) True or False? Explain why and correct the false statements to make them true.

- (a) $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector $x \in \mathbb{R}^n$ is mapped onto some vector in \mathbb{R}^m .
- (b) $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if every vector $x \in \mathbb{R}^n$ is mapped onto a unique vector in \mathbb{R}^m .
- (c) A linear map $T : \mathbb{R}^3 \to \mathbb{R}^2$ cannot be one-to-one.
- (d) There is a surjective linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$.

Solution:

- (a) False. Any function $T : \mathbb{R}^n \to \mathbb{R}^m$ maps every vector $x \in \mathbb{R}^n$ onto some vector $T(x)$ in \mathbb{R}^m . The correct statement is: $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if for every vector $y \in \mathbb{R}^m$ there is some vector $x \in \mathbb{R}^n$ such that $T(x) = y$.
- (b) False. Any function $T : \mathbb{R}^n \to \mathbb{R}^m$ maps every vector $x \in \mathbb{R}^n$ onto the unique vector $T(x)$ in \mathbb{R}^m . The correct statement is: $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if any 2 distinct vectors $x_1, x_2 \in \mathbb{R}^n$ are mapped to distinct vectors $T(x_1), T(x_2)$.
- (c) True. If *A* is the 2×3 standard matrix of *T*, then solving $A \cdot x = 0$ will always yield at least one free variable.
- (d) False. If *A* is the 3×4 standard matrix of *T*, then $Ax = y$ cannot have a solution for every $y \in \mathbb{R}^4$ since the echelon form of *A* has at least one zero row.
- (6) If defined, compute the following for the matrices

$$
A = \begin{bmatrix} 2 & 1 & -4 \\ 3 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ -3 & 4 \\ 2 & 0 \end{bmatrix}, C = \begin{bmatrix} -2 & 1 \\ 2 & -3 \end{bmatrix}
$$

Else explain why the computation is not defined.

(a) AB (b) BA (c) AC (d) $A + C$ (e) $AB + 2C$ **Solution:**

$$
AB = \begin{bmatrix} 2 \cdot 1 + 1 \cdot (-3) - 4 \cdot 2 & 2 \cdot (-1) + 1 \cdot 4 - 4 \cdot 0 \\ 3 \cdot 1 - 1 \cdot (-3) + 1 \cdot 2 & 3 \cdot (-1) - 1 \cdot 4 + 1 \cdot 0 \end{bmatrix} = \begin{bmatrix} -9 & 2 \\ 8 & -7 \end{bmatrix}
$$

$$
BA = \begin{bmatrix} 1 \cdot 2 - 1 \cdot 3 & 1 \cdot 1 - 1 \cdot (-1) & 1 \cdot (-4) - 1 \cdot 1 \\ * & * & * \end{bmatrix} = \begin{bmatrix} -1 & 2 & -5 \\ 6 & -7 & 16 \\ 4 & 2 & -8 \end{bmatrix}
$$

AC is undefined since the length of *A*'s rows and the length of *C*'s columns are not the same.

 $A + C$ is undefined since the sizes of *A* and *C* don't match.

$$
AB + 2C = \begin{bmatrix} -9 & 2 \\ 8 & -7 \end{bmatrix} + \begin{bmatrix} -4 & 2 \\ 4 & -6 \end{bmatrix} = \begin{bmatrix} -13 & 4 \\ 12 & -13 \end{bmatrix}
$$

- (7) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ first rotate points around the origin by 60° counter clockwise and then reflect points at the line with equation $y = x$. Give the standard matrix for *T*.
	- (a) Recall the standard matrix A for the rotation R by 60 \degree from class.
	- (b) Determine the standard matrix *B* for the reflection *S* at the line with equation $y = x$ (a sketch will help).
	- (c) Since *T* is the composition of *S* and *R*, compute the standard matrix *C* of *T* as the product of *B* and *A*. Careful about the order!

Solution:

(a) The standard matrix for the rotation *R* by $\alpha = 60^{\circ}$ is

$$
A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}
$$

(b) The reflection *S* at the diagonal flips the unit vectors, i.e., $T(e_1) = e_2$ and $T(e_2) = e_1$. Hence the standard matrix of *S* is

$$
B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$

(c) Since $T = S \circ R$ (*S* after *R*), its standard matrix is

$$
C = BA = \begin{bmatrix} \sin \alpha & \cos \alpha \\ \cos \alpha & -\sin \alpha \end{bmatrix}
$$

(8) Continuation of (7): What is the standard matrix for $U: \mathbb{R}^2 \to \mathbb{R}^2$ which first reflects points at the line with equation $y = x$ and then rotates points around the origin by 60◦ counter clockwise? Compare *T* and *U*.

Solution: Since $U = R \circ S$ (*R* after *R*), its standard matrix is

$$
AB = \begin{bmatrix} -\sin \alpha & \cos \alpha \\ \cos \alpha & \sin \alpha \end{bmatrix}
$$

Comparing the result with the standard matrix of $S \circ R$, we see that the result is not the same. Order of function composition and matrix multiplication matters!