Math 2135 - Assignment 4

Due September 27, 2024

(1) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear map such that

$$T\begin{pmatrix} 1\\2 \end{pmatrix} = \begin{bmatrix} 2\\0\\-3 \end{bmatrix}, \ T\begin{pmatrix} 3\\2 \end{bmatrix} = \begin{bmatrix} -2\\2\\1 \end{bmatrix}$$

- (a) Use linearity to find $T(e_1)$ and $T(e_2)$ for the unit vectors e_1, e_2 in \mathbb{R}^2 .
- (b) Give the standard matrix for T and determine $T\begin{pmatrix} x \\ y \end{pmatrix}$ for arbitrary $x, y \in \mathbb{R}$.
- (2) Is the following injective, surjective, bijective? What is its range?

$$T: \mathbb{R}^3 \to \mathbb{R}^2, \ x \mapsto \begin{bmatrix} 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix} \cdot x$$

(3) Is the following injective, surjective, bijective?

$$T: \mathbb{R}^3 \to \mathbb{R}^3, \ x \mapsto \begin{bmatrix} 1 & -1 & 2 \\ -2 & 0 & 1 \\ 3 & -1 & 1 \end{bmatrix} \cdot x$$

- (4) True or False? Explain why and correct the false statements to make them true.
 (a) A linear transformation T: ℝⁿ → ℝ^m is completely determined by the images of the unit vectors in ℝⁿ.
 - (b) Not every linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ can be written as T(x) = Ax for some matrix A.
 - (c) The composition of any two linear transformations is linear as well.
- (5) True or False? Explain why and correct the false statements to make them true.
 (a) T : ℝⁿ → ℝ^m is onto ℝ^m if every vector x ∈ ℝⁿ is mapped onto some vector in ℝ^m.
 - (b) $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if every vector $x \in \mathbb{R}^n$ is mapped onto a unique vector in \mathbb{R}^m .
 - (c) A linear map $T : \mathbb{R}^3 \to \mathbb{R}^2$ cannot be one-to-one.
 - (d) There is a surjective linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$.
- (6) If defined, compute the following for the matrices

$$A = \begin{bmatrix} 2 & 1 & -4 \\ 3 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ -3 & 4 \\ 2 & 0 \end{bmatrix}, C = \begin{bmatrix} -2 & 1 \\ 2 & -3 \end{bmatrix}$$

Else explain why the computation is not defined.

- (a) AB
 (b) BA
 (c) AC
 (d) A + C
 (e) AB + 2C
 (7) Let T: ℝ² → ℝ² first rotate points around the origin by 60° counter clockwise and then reflect points at the line with equation y = x. Give the standard matrix for T.
 - (a) Recall the standard matrix A for the rotation R by 60° from class.
 - (b) Determine the standard matrix B for the reflection S at the line with equation y = x (a sketch will help).
 - (c) Since T is the composition of S and R, compute the standard matrix C of T as the product of B and A. Careful about the order!
- (8) Continuation of (7): What is the standard matrix for $U: \mathbb{R}^2 \to \mathbb{R}^2$ which first reflects points at the line with equation y = x and then rotates points around the origin by 60° counter clockwise? Compare T and U.