Math 2135 - Assignment 2

Due September 14, 2024

(1) Is **b** a linear combination of the vectors $\mathbf{a}_1, \mathbf{a}_2$?

$\mathbf{a}_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} -\\-\\3 \end{bmatrix}$	$\begin{bmatrix} 2\\3\\\end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1\\-2\\3\\\end{bmatrix}$
--	---

Solution:

No, $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 = \mathbf{b}$ has no solution for x_1, x_2 .

(2) Is
$$\mathbf{b} \in \text{Span}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$$
 for

$$\mathbf{a}_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} -2\\3\\-2 \end{bmatrix}, \mathbf{a}_3 = \begin{bmatrix} -6\\7\\5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 11\\-5\\9 \end{bmatrix}?$$

Solution:

Row reduce the augmented matrix for the system $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$.

So a solution exists and **b** is a linear combination of the vectors $\mathbf{a}_1, \mathbf{a}_1, \mathbf{a}_3$.

(3) For which values of a is **b** in the plane spanned by \mathbf{v}_1 and \mathbf{v}_2 ?

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\-2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -2\\1\\7 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} a\\-3\\-5 \end{bmatrix}$$

Solution:

Row reduce the augmented matrix

Solvable for a = -2. Hence **y** is in the plane spanned by \mathbf{v}_1 and \mathbf{v}_2 iff a = -2.

(4) Find vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{R}^3$ that span the plane in \mathbb{R}^3 with equation x - 2y + 3z = 0. How many do you need?

Hint: Write down a parametrized solution for the equation. Solution:

The solution is z = t, y = s, x = 2s - 3t, hence

$$\begin{bmatrix} x\\ y\\ z \end{bmatrix} = s \begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix} + t \begin{bmatrix} -3\\ 0\\ 1 \end{bmatrix}, \ s, t \in \mathbb{R}.$$

Ever point on the plane is a linear combination of $\mathbf{v}_1 = \begin{bmatrix} 2\\1\\0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -3\\0\\1 \end{bmatrix}$.

- (5) Are the following true or false? Explain your answers.
 - (a) For every A ∈ ℝ^{2×3} with 2 pivots, Ax = 0 has a nontrivial solution.
 Solution:
 Truce Are 0 is consistent and has exactly 2 = 2 free excitables have

True: Ax = 0 is consistend and has exactly 3 - 2 free variables, hence a non-trivial solution.

(b) For every $A \in \mathbb{R}^{2 \times 3}$ with 2 pivots and every $\mathbf{b} \in \mathbb{R}^2$, $Ax = \mathbf{b}$ is consistent. Solution:

True: The echelon form of Ax = b has 2 non-zero rows.

- (c) The vector $3\mathbf{v}_1$ is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2$. Solution: True: $3\mathbf{v}_1 = 3\mathbf{v}_1 + 0\mathbf{v}_2$.
- (d) For $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^3$, $\operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2)$ is always a plane through the origin. Solution: False: It might be a plane or a line or just the origin (if $\mathbf{v}_1 = \mathbf{v}_2 = 0$). E.g., $\operatorname{Span}\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\4\\6 \end{bmatrix} \right\}$ is just the line spanned by $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ because the second vector is a multiple of the first.
- (6) [1, cf. Section 1.5, Ex 17] Let

$$A = \begin{bmatrix} 2 & 2 & 4 \\ -4 & -4 & -8 \\ 0 & -3 & -3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 8 \\ -16 \\ 12 \end{bmatrix}, \quad \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Solve the equations $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$. Express both solution sets in parametric vector form. Give a geometric description of the solution sets.

Solution:

We solve $A\mathbf{x} = \mathbf{b}$:

$$\begin{bmatrix} 2 & 2 & 4 & 8 \\ -4 & -4 & -8 & -16 \\ 0 & -3 & -3 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & 1 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 8 \\ 0 & 1 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The solution in parametric vector form is

$$\mathbf{x} = \begin{bmatrix} 8\\ -4\\ 0 \end{bmatrix} + r \begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix}, \quad r \in \mathbb{R}.$$

The solution set is a line through the point (8, -4, 0) spanned by the vector (-1, -1, 1). For the homogeneous system $A\mathbf{x} = \mathbf{0}$ we obtain

$$\mathbf{x} = r \begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix}, \quad r \in \mathbb{R}.$$

This solution set is a line through the origin spanned by the vector (-1, -1, 1).

(7) (a) Which of the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are in the nullspace of A, Null A?

$$\mathbf{u} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -2\\0\\4\\-2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 1\\1\\-2\\1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 0 & 2 & 4\\2 & -4 & 1 & 0\\-3 & 6 & 2 & 7 \end{bmatrix}$$

Solution:

 $\mathbf{u}, \mathbf{v} \in \text{Null } A \text{ since } A\mathbf{u} = \mathbf{0}, A\mathbf{v} = \mathbf{0}; \mathbf{w} \notin \text{Null } A.$

(b) Solve $A\mathbf{x} = \mathbf{0}$ and give the solution in parametric vector form. Solution:

We solve $A\mathbf{x} = \mathbf{0}$ and reduce the augmented matrix:

Γ	0	0	2	4	0		1	-2	0	-1	0
	2	-4	1	0	0	$\sim \cdots \sim$	0	0	1	2	0
	-3	6	2	7	0		0	0	0	0	0

The variables x_2 and x_4 are free. We obtain

$$x_1 = 2r + s$$
$$x_2 = r$$
$$x_3 = -2s$$
$$x_4 = s.$$

The solution in parametric vector form is

$$\mathbf{x} = r \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix} + s \begin{bmatrix} 1\\0\\-2\\1 \end{bmatrix} \quad r, s \in \mathbb{R}.$$

(c) Find vectors $v_1, \ldots, v_k \in \mathbb{R}^4$ such that Null $A = \text{Span}\{v_1, \ldots, v_k\}$. Solution:

$$\mathbf{u} = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} 1\\0\\-2\\1 \end{bmatrix}.$$

(8) Show the following:

Theorem. Suppose $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{p} . Then the set of all solutions of $A\mathbf{x} = \mathbf{b}$ is

$$\mathbf{p} + \operatorname{Null} A = \{ \mathbf{p} + \mathbf{v} \mid \mathbf{v} \in \operatorname{Null} A \}.$$

Hint: For the proof suppose $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{p} and use 2 steps:

(a) Show that if \mathbf{v} is in Null A, then $\mathbf{p} + \mathbf{v}$ is also a solution for $A\mathbf{x} = \mathbf{b}$.

- (b) Show that if \mathbf{q} is a solution for $A\mathbf{x} = \mathbf{b}$, then $\mathbf{q} \mathbf{p}$ is in Null A. Solution:
- (a) Assume **v** is in the null space of A. We know that $A\mathbf{v} = \mathbf{0}$ and $A\mathbf{p} = \mathbf{b}$. Thus, using that matrix multiplication distributes over a sum of vectors by a theorem from class,

$$A(\mathbf{p} + \mathbf{v}) = A\mathbf{p} + A\mathbf{v} = \mathbf{b} + \mathbf{0} = \mathbf{b}.$$

Hence $\mathbf{p} + \mathbf{v}$ is a solution of $A\mathbf{x} = \mathbf{b}$.

(b) Assume **q** is a solution of $A\mathbf{x} = \mathbf{b}$. Then $A\mathbf{p} = \mathbf{b}$ and $A\mathbf{q} = \mathbf{b}$. Thus

$$A(\mathbf{q} - \mathbf{p}) = A\mathbf{q} - A\mathbf{p} = \mathbf{b} - \mathbf{b} = \mathbf{0}.$$

Hence $\mathbf{q} - \mathbf{p}$ is in Null A. Thus $\mathbf{q} = \mathbf{p} + (\mathbf{q} - \mathbf{p})$ is in $\mathbf{p} + \text{Null } A$. We have show that every solution of $Ax = \mathbf{b}$ is in $\mathbf{p} + \text{Null } A$ and conversely.

References

 David C. Lay, Steven R. Lay, and Judi J. McDonald. Linear Algebra and Its Applications. Addison-Wesley, 5th edition, 2015.