Math 2001 - Review for Midterm 2

Counting.

- (1) Lists: with/without repetitions, permutations factorials (3.1,, 3.2), subsets binomials (3.3), integer solutions of $x_1 + x_2 + \cdots + x_n = k$
- (2) Binomial Theorem: Pascal's triangle (3.4)
- (3) Inclusion-Exclusion (3.5)

Modular arithmetic.

- (1) Integers: divisibility, division algorithm, gcd, lcm, extended Euclidean algorithm, Bezout's identity and coefficients
- (2) congruences (5.2), integers mod n (11.4)

Proof methods.

(1) direct proof (4.2, 4.3), contrapositive proof (5), proof by contradiction (6), proof of if-and-only-if statements

Some practice problems.

- (1) (a) Compute $3 8 \mod 11$ and $16 \cdot 20 \mod 11$.
 - (b) Compute gcd(111, 33) and its Bezout coefficients.
- (2) Prove that $\sqrt[3]{2}$ is irrational.
- (3) Let $a, b \in \mathbb{Z}$. Show that $a \equiv b \mod 6$ if and only if $a \equiv b \mod 2$ and $a \equiv b \mod 3$.
- (4) Let $a \in \mathbb{Z}$. Show that gcd(a, a + 1) = 1.
- (5) Give the first sentence (the assumptions) for the proofs of the following statements:
 - (a) Let $a, b \in \mathbb{Z}$. If a|b and b|a, then a = b or a = -b. (direct proof)
 - (b) Let $a, b \in \mathbb{Z}$. If $(a+b)^2 = a^2 + b^2$, then a = 0 or b = 0. (contrapositive proof)
 - (c) Let $x, y \in \mathbb{Z}$. If $4|x^2 + y^2$, then x and y are even. (proof by contradiction)