Math 2001 - Assignment 12

Due April 20, 2018

- (1) List the equivalence classes for these equivalence relations:
 - (a) The relation "has the same size" on the power set of $\{1, 2, 3\}$
 - (b) \equiv_n on \mathbb{Z}
 - (c) $R = \{(x, y) \in \mathbb{Z} : |x| = |y|\}$ on \mathbb{Z}
- (2) How many different equivalence relations are there on $A = \{1, 2, 3\}$? Describe them all by listing their equivalence classes.
- (3) Given finite sets A and B. How many different relations are there from A to B?
- (4) Let \sim be an equivalence relation on a set A, let $a, b \in A$. Let [a] denote the equivalence class of a modulo \sim . Show that

$$a \nsim b \text{ iff } [a] \cap [b] = \emptyset.$$

- (5) Give the addition and multiplication tables for \mathbb{Z}_6 .
- (6) Dividing in \mathbb{Z}_n means solving an equation $[a] \cdot [x] = [b]$ for [x]. Solve $[8] \cdot [x] = [1]$ in \mathbb{Z}_{37} .

Hint: Use the Euclidean algorithm to solve $8x \equiv 1 \mod 37$.