Math 2001 - Assignment 11

Due April 13, 2018

(1) Your country issues stamps for 3 cents and for 7 cents. Show that every amount of at least 12 cents can be combined from them, that is, for every $n \in \mathbb{N}, n \geq 12$, there exist $a, b \in \mathbb{N}_0$ such that

$$n = 3a + 7b.$$

Use strong induction on n with base cases n = 12, 13, 14.

(2) Let p_1, p_2, \ldots denote the list of all primes. Show that for integers $a = \prod_{i \in \mathbb{N}} p_i^{e_i}, b = \prod_{i \in \mathbb{N}} p_i^{f_i}$ with $e_i, f_i \in \mathbb{N}_0$ for $i \in \mathbb{N}$,

$$lcm(a,b) = \prod_{i \in \mathbb{N}} p_i^{\max(e_i,f_i)}.$$

(3) Show for all $a, b \in \mathbb{N}$:

$$gcd(a, b) \cdot lcm(a, b) = ab$$

Hint: Use the formula for gcd and lcm from class and the previous problem.

- (4) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive:
 - (a) < on \mathbb{Z}
 - $(b) \neq on \mathbb{Z}$
- (5) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive:
 - (a) $S = \{(1, 2), (1, 3), (2, 2), (2, 3), (3, 2)\}$ on $\{1, 2, 3\}$
 - (b) \subseteq on the power set P(A) of a set A
- (6) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive:
 - (a) \mid (divides) on \mathbb{N}
 - (b) $R = \{(x, y) \in \mathbb{R} : |x y| \le 1\}$