Math 2001 - Assignment 8

Due March 16, 2018

(1) Read Section 5.3 in [1].	
(2) Solve the following for $u, v \in \mathbb{Z}$:	
(a) $33u + 10v = -5$ (b) $44u + 10v =$	5
(3) Complete the proof from class that $gcd(a, b) = gcd(a - qb, b)$	5)
for all $a, b, q \in \mathbb{Z}$ with not both a and b equal 0.	,
Assume $d a-qb$ and $d b$. Show that $d a$ and $d b$.	
(4) Let $a, b, c \in \mathbb{Z}$ with a, b not both 0. Show that	
$\exists u, v \in \mathbb{Z} \colon u \cdot a + v \cdot b = c \text{ iff } \gcd(a, b) c.$	
Hint: There are 2 implications to show:	
(a) If $u \cdot a + v \cdot b = c$, then $gcd(a, b) c$.	
(b) If $gcd(a,b) c$, then there are $u,v\in\mathbb{Z}$ such that $u\cdot a+v\cdot b=0$	c.
Use Bezout's identity!	
(5) Two integers have the <i>same parity</i> if both are even or both as	e
odd. Otherwise they have opposite parity.	
Let $a, b \in \mathbb{Z}$. Show that if $a + b$ is even, then a, b have the	ıe
same parity.	
Hint: Use a contrapositive proof.	
(6) Complete the following proof of Euclid's Lemma:	
Let p be a prime, $a, b \in \mathbb{Z}$. If $p ab$, then $p a$ or $p b$.	
D (A 1 / W 11 .1 . 17	
<i>Proof:</i> Assume but $p \nmid a$. We will show $p b$.	
By Bezout's identity we have $u, v \in \mathbb{Z}$ such that	
$\underline{\hspace{1cm}} = \gcd(a, p).$	
Since p is and $p \not\mid a$, we have $gcd(a, p) =$	
Hence	_
$ua + vp = \underline{\qquad}$.	
Multiplying this equation by yields	
$\underline{\hspace{1cm}} = b$	
Since $p $ and $p $, we have a mu	l-
tiple of p on the left hand side of this equation. Thus $___$	
Please hand in this sheet of paper with your solution of 6.	
[1] Richard Hammack. The Book of Proof. Creative Commons, 2n	d
edition, 2013.	