QUANTIFIED STATEMENTS

PETER MAYR (MATH 2001, CU BOULDER)

 \forall ("for all") is called the **universal quantifier**. \exists ("there exists") is called the **existential quantifier**.

Let A be a set and P(x) a statement about elements $x \in A$.

 $\bullet \ \forall x \in A : P(x)$

True if P(x) is true for all $x \in A$.

 $\bullet \ \exists x \in A : P(x)$

True if P(x) is true for some $x \in A$.

Negations

- $\bullet \sim (\forall x \in A : P(x))$
- $\bullet \sim (\exists x \in A : P(x))$

Examples. Use quantifiers and sets to express the following statements. Are they true? Give their negation.

- (1) For all $x \in \mathbb{R}$, x^2 is greater or equal to 0.
- (2) $\sin x \in [-1, 1]$ for any $x \in \mathbb{R}$.
- (3) Every integer is even.
- (4) There exists $x \in \mathbb{Z}$ such that $x^2 = 3$.
- (5) $2^x \ge 1$ for some $x \in \mathbb{R}$.
- (6) Some subsets of \mathbb{N} are finite.

Date: September 19, 2025.

2

Multiple quantifiers

- (1) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} : x < y$
- (2) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : x < y$
- (3) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} : x < y$
- (4) $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} : x < y$

Note. Order of \forall and \exists matters!

Truth of quantified statement as game

$$\forall x \in A \ \exists y \in B : \ P(x,y)$$

Examples. Are the following statements true? Give their negation.

- (1) For every $x \in \mathbb{R}$ there is some $y \in \mathbb{N}$ such that $x \leq y$.
- (2) There exists some $y \in \mathbb{N}$ such that $x \leq y$ for every $x \in \mathbb{R}$.
- (3) For every $a,b \in \mathbb{R}$ with a < b there exists $x \in \mathbb{Q}$ such that $x \in [a,b]$.
- (4) Every polynomial has a root in \mathbb{R} .