Math 2001 - Practice Midterm 1

- (1) Use the Axiom of Replacement or Specification to describe:
 - (a) $C = \{1, 9, 25, 49, 81\}$
 - (b) D =the set of subsets of \mathbb{Z} of even size

Solution

- (a) Replacement $C = \{(2n+1)^2 : n \in \{0,1,2,3,4\}\}$ Specification $C = \{n \in \{1,\dots,81\} : n \text{ is an odd square } \}$
- (b) Specification $D = \{X \in P(\mathbb{Z}) : |X| \text{ is even } \}$
- (2) Prove without Venn diagrams that for all sets A, B in a universe U:

$$\overline{A} - \overline{B} = B - A$$

Solution: First show $\overline{A} - \overline{B} \subseteq B - A$: Let $x \in \overline{A} - \overline{B}$. Then $x \in \overline{A}$ and $x \notin \overline{B}$. That means $x \notin A$ and $x \in B$. Hence $x \in B - A$.

For the converse $B-A\subseteq \overline{A}-\overline{B}$ just do the steps above backwards: Let $x\in B-A$.

Then $x \in \overline{A} - \overline{B}$.

This shows that the two sets are equal.

(3) Let P(A) denote the power set of A. Is the following true for all sets A, B?

$$P(A \times B) \subseteq P(A) \times P(B)$$

Prove it or give a counter-example.

Solution: $A \times B$ is the set of all pairs (a, b) where $a \in A, b \in B$. The elements of $P(A \times B)$ are arbitrary sets of pairs (a, b) where $a \in A, b \in B$.

On the other hand, the elements of $P(A) \times P(B)$ are pairs of subsets of A and subsets of B. Since sets of pairs and pairs of sets are not the same, elements of $P(A \times B)$ are not in $P(A) \times P(B)$.

For an explicit counter-example consider e.g. $A = \{a\}, B = \{b\}$. Then $A \times B = \{(a, b)\}$ and

$$P(A \times B) = \{\emptyset, \{(a,b)\}\}.$$

On the other hand $P(A) = \{\emptyset, A\}$ and $P(B) = \{\emptyset, B\}$. Hence

$$P(A)\times P(B)=\{(\emptyset,\emptyset),(\emptyset,B),(A,\emptyset),(A,B)\}.$$

Clearly $\emptyset \in P(A \times B)$ but $\emptyset \notin P(A) \times P(B)$. Hence $P(A \times B) \not\subseteq P(A) \times P(B)$.

- (4) Write using quantifiers and logical operations:
 - (a) The square of any real number is non-negative.
 - (b) There exists an integer x such that $x^y = x$ for all integers y.

Solution

- (a) $\forall x \in \mathbb{R} : x^2 \ge 0$
- (b) $\exists x \in \mathbb{Z} \ \forall y \in \mathbb{Z} : \ x^y = x$
- (5) Which of the following are true? Explain why or why not.
 - (a) $\forall x \in \mathbb{Z} \ \forall y \in \mathbb{Z} : xy = y$
 - (b) $\forall x \in \mathbb{Z} \ \exists y \in \mathbb{Z} : xy = y$
 - (c) $\exists x \in \mathbb{Z} \ \forall y \in \mathbb{Z} : xy = y$
 - (d) $\exists x \in \mathbb{Z} \ \exists y \in \mathbb{Z} : xy = y$

Solution

- (a) False, e.g., for x = 2, y = 1.
- (b) True, for any x pick y = 0 to get xy = y.
- (c) True, pick x = 1 to get for any y that xy = y.
- (d) True, e.g. for x = y = 0.
- (6) Negate without using the phrase "It is not true that..." and without " \sim ":
 - (a) $\forall n \in \mathbb{N} \ \exists A \in P(\mathbb{N}) : |A| > n$
 - (b) \forall polynomial $p \exists x \in \mathbb{R} : p(x) = 0 \text{ or } p \text{ is constant}$
 - (c) x + y = 0 and x y = 0 iff x = 0 and y = 0.

Solution

- (a) $\exists n \in \mathbb{N} \ \forall A \in P(\mathbb{N}) : |A| \leq n$
- (b) \exists polynomial $p \ \forall x \in \mathbb{R} : \ p(x) \neq 0 \ \text{and} \ p \ \text{is not constant}$
- (c) x + y = 0 and x y = 0 iff $x \neq 0$ or $y \neq 0$.