Math 2001 - Practice Midterm 1

- (1) Use the Axiom of Replacement or Specification to describe:
 - (a) $C = \{1, 9, 25, 49, 81\}$
 - (b) D =the set of subsets of \mathbb{Z} of even size
- (2) Prove without Venn diagrams that for all sets A, B in a universe U:

$$\overline{A} - \overline{B} = B - A$$

(3) Let P(A) denote the power set of A. Is the following true for all sets A, B?

$$P(A \times B) \subseteq P(A) \times P(B)$$

Prove it or give a counter-example.

- (4) Write using quantifiers and logical operations:
 - (a) The square of any real number is non-negative.
 - (b) There exists an integer x such that $x^y = x$ for all integers y.
- (5) Which of the following are true? Explain why or why not.
 - (a) $\forall x \in \mathbb{Z} \ \forall y \in \mathbb{Z} : xy = y$
 - (b) $\forall x \in \mathbb{Z} \ \exists y \in \mathbb{Z} : xy = y$
 - (c) $\exists y \in \mathbb{Z} \ \forall x \in \mathbb{Z} : xy = y$
 - (d) $\exists x \in \mathbb{Z} \ \exists y \in \mathbb{Z} : xy = y$
- (6) Negate without using the phrase "It is not true that..." and without "∼":
 - (a) $\forall n \in \mathbb{N} \ \exists A \in P(\mathbb{N}) : |A| > n$
 - (b) \forall polynomial $p \exists x \in \mathbb{R} : p(x) = 0 \text{ or } p \text{ is constant}$
 - (c) x + y = 0 and x y = 0 iff x = 0 and y = 0.