

Math 2001 - Assignment 13

Due December 5, 2025

- (1) (a) Give domain, codomain, and range of $f: \mathbb{Z} \rightarrow \mathbb{N}$, $x \mapsto x^2 + 1$. What is $f(3)$?
(b) Is f one-to-one, onto, bijective?
(c) Determine $f(\{2x : x \in \mathbb{Z}\})$ and $f^{-1}(\{1, 2, 3, \dots, 10\})$.
- (2) Give examples for
 - (a) a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that is not injective but surjective;
 - (b) a function $g: \{1, 2, 3\} \rightarrow \{1, 2\}$ that is neither injective nor surjective;
 - (c) a bijective function $h: \{1, 2, 3\} \rightarrow \{1, 2\}$.
- (3) Let $f: A \rightarrow B, g: B \rightarrow C$. Show that
 - (a) If $g \circ f$ is injective, then f is injective.
 - (b) If $g \circ f$ is surjective, then g is surjective.

Hint: Use contrapositive proofs.

Give examples for f, g on $A = B = C = \mathbb{N}$ such that

- (c) $g \circ f$ is injective but g is not injective;
- (d) $g \circ f$ is surjective but f is not surjective.

- (4) (a) Show that

$$f: \mathbb{R} - \{1\} \rightarrow \mathbb{R} - \{2\}, x \mapsto \frac{2x + 1}{x - 1}$$

is bijective.

- (b) Determine f^{-1} .
- (5) Try to you find an inverse for $f: \mathbb{R} \rightarrow \mathbb{R}^+$, $x \mapsto e^{x^3+1}$. Is f bijective?
- (6) Let U be a set, and let c be the function on the power set of U that maps every set to its complement in U , i.e.,

$$c: P(U) \rightarrow P(U), X \mapsto \bar{X}.$$

Determine c^{-1} if it exists.