

Math 2001 - Assignment 12

Due November 21, 2025

- (1) List the equivalence classes for these equivalence relations:
 - (a) The relation \sim on subsets A, B of $\{1, 2, 3\}$ where $A \sim B$ if $|A| = |B|$.
 - (b) $R = \{(x, y) \in \mathbb{Z} : |x| = |y|\}$ on \mathbb{Z}
- (2) Let \sim be an equivalence relation on a set A , let $a, b \in A$. Let $[a]$ denote the equivalence class of a modulo \sim . Show that

$$a \not\sim b \text{ iff } [a] \cap [b] = \emptyset.$$

- (3) Complete the proof of the following:

Theorem. Let $\{A_i : i \in I\}$ be a partition of a set A . Then

$$x \sim y \text{ if } \exists i \in I : x, y \in A_i$$

defines an equivalence relation on A with equivalence classes A_i for $i \in I$.

Proof: For reflexivity: Let $x \in A$. Since $A = \underline{\hspace{2cm}}$ by the definition of $\underline{\hspace{2cm}}$, we have $i \in I$ such that $x \in \underline{\hspace{2cm}}$. Hence $x \sim \underline{\hspace{2cm}}$.

For $\underline{\hspace{2cm}}$: Let $x, y \in A$. Assume $x \sim y$, that is, $\underline{\hspace{2cm}}$ for some $i \in I$. Then $x, y \in A_i$ and $\underline{\hspace{2cm}}$.

For transitivity: Let $\underline{\hspace{2cm}}$. Assume $x \sim y$ and $y \sim z$. Then we have $i \in I$ such that $\underline{\hspace{2cm}}$ and $j \in I$ such that $\underline{\hspace{2cm}}$. Since $\underline{\hspace{2cm}} \in A_i \cap A_j$, we have $\underline{\hspace{2cm}}$ by the definition of a partition. Hence $\underline{\hspace{2cm}}$ and $x \sim z$.

This completes the proof that \sim is $\underline{\hspace{2cm}}$.

Finally for every $x \in A$, the class $[x]_\sim = \underline{\hspace{2cm}}$ for the unique $i \in I$ such that $x \in \underline{\hspace{2cm}}$. \square

- (4) (a) Given finite sets A and B . How many different relations are there from A to B ?
- (b) How many different equivalence relations are there on $A = \{1, 2, 3\}$? Describe them all by listing the partitions of A .
- (5) (a) Give the tables for addition and multiplication for $\mathbb{Z}_6 = \mathbb{Z}/6\mathbb{Z}$.
- (b) Dividing by $[a]$ in $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ means solving an equation $[a] \cdot [x] = [1]$ for $[x]$.

Solve $[8] \cdot [x] = [1]$ in $\mathbb{Z}_{37} = \mathbb{Z}/37\mathbb{Z}$.

Hint: Use the Euclidean algorithm to solve $8x \equiv 1 \pmod{37}$.