

Math 2001 - Assignment 11

Due November 14, 2025

(1) Let p_1, p_2, \dots denote the list of all primes. Show that for integers $a = \prod_{i \in \mathbb{N}} p_i^{e_i}, b = \prod_{i \in \mathbb{N}} p_i^{f_i}$ with $e_i, f_i \in \mathbb{N}_0$ for $i \in \mathbb{N}$,

$$\text{lcm}(a, b) = \prod_{i \in \mathbb{N}} p_i^{\max(e_i, f_i)}.$$

Proof:

a) First note that $\prod_{i \in \mathbb{N}} p_i^{\max(e_i, f_i)}$ is an integer multiple of a since

$$\prod_{i \in \mathbb{N}} p_i^{\max(e_i, f_i)} = a \cdot \underbrace{\prod_{i \in \mathbb{N}} p_i^{\max(e_i, f_i) - e_i}}_{\in \mathbb{Z}}.$$

Similar $\prod_{i \in \mathbb{N}} p_i^{\max(e_i, f_i)}$ is an integer multiple of b .

b) Next let $m = \prod_{i \in \mathbb{N}} p_i^{g_i}$ for $g_i \in \mathbb{N}_0$ a common multiple of a and b . Let $i \in \mathbb{N}$. Then $p_i^{e_i}$ divides m and by the Fundamental Theorem of Arithmetic, $p_i^{e_i}$ divides $p_i^{g_i}$. Hence $e_i \leq g_i$. Similarly $f_i \leq g_i$. Together they imply that $\max(e_i, f_i) \leq g_i$.

Thus for any common multiple m of a and b we have $\prod_{i \in \mathbb{N}} p_i^{\max(e_i, f_i)} \leq m$ and the former is $\text{lcm}(a, b)$. \square

(2) Show for all $a, b \in \mathbb{N}$:

$$\text{gcd}(a, b) \cdot \text{lcm}(a, b) = ab$$

Hint: Use the formula for gcd and lcm from class and the previous problem.

Proof: Let $a = \prod_{i \in \mathbb{N}} p_i^{e_i}, b = \prod_{i \in \mathbb{N}} p_i^{f_i}$. By a lemma from class

$$\text{gcd}(a, b) = \prod_{i \in \mathbb{N}} p_i^{\min(e_i, f_i)} \quad \text{lcm}(a, b) = \prod_{i \in \mathbb{N}} p_i^{\max(e_i, f_i)}$$

Now $ab = \prod_{i \in \mathbb{N}} p_i^{e_i + f_i}$ and

$$\text{gcd}(a, b)\text{lcm}(a, b) = \prod_{i \in \mathbb{N}} p_i^{\min(e_i, f_i) + \max(e_i, f_i)}.$$

Both numbers on the right hand side are equal since for any $e, f \in \mathbb{N}_0$

$$e + f = \min(e, f) + \max(e, f).$$

The proof of that is by case distinction:

Case 1, $e \leq f$: Then $\min(e, f) = e, \max(e, f) = f$ and $\min(e, f) + \max(e, f) = e + f$.

Case 2, $e > f$: Similar. \square

Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive. Which are equivalences, which partial orders?

(3) \neq on \mathbb{Z}

Solution.

- not reflexive since e.g. it is not true that $0 \neq 0$
- symmetric since $\forall x, y \in \mathbb{Z}: x \neq y \Rightarrow y \neq x$
- not antisymmetric since e.g. $0 \neq 1$ and $1 \neq 0$ but it is not true that $0 = 1$
- not transitive since e.g. $0 \neq 1$ and $1 \neq 0$ but it is not true that $0 \neq 0$
- Hence \neq is neither an equivalence nor a partial order.

(4) \subseteq on the power set $P(A)$ of a set A

Solution.

- reflexive since $X \subseteq X$ for every set $X \in P(A)$.
- not symmetric if $A \neq \emptyset$. Then $\emptyset \subseteq A$ but $A \not\subseteq \emptyset$.
- antisymmetric since $X \subseteq Y$ and $Y \subseteq X$ implies $X = Y$ for all $X, Y \in P(A)$.
- transitive since $X \subseteq Y$ and $Y \subseteq Z$ implies $X \subseteq Z$ for all $X, Y, Z \in P(A)$.
- Hence \subseteq is not an equivalence but a partial order.

(5) $|$ (divides) on \mathbb{N}

Solution.

- reflexive since $x|x$ for every $x \in \mathbb{N}$.
- not symmetric since e.g. $1|2$ but $2 \not|1$.
- antisymmetric since $x|y$ and $y|x$ implies $x = y$ for all $x, y \in \mathbb{N}$.
- transitive since $x|y$ and $y|z$ implies $x|z$ for all $x, y, z \in \mathbb{N}$.
- Hence $|$ is not an equivalence but a partial order.

(6) $R = \{(x, y) \in \mathbb{R}: |x - y| \leq 1\}$

Solution.

- reflexive since $|x - x| = 0 \leq 1$ for every $x \in \mathbb{R}$.
- symmetric since $|x - y| = |y - x|$ for all $x, y \in \mathbb{R}$.
- not antisymmetric since e.g. $|0 - 1| \leq 1$ and $|1 - 0| \leq 1$ but $0 \neq 1$
- not transitive since e.g. $|0 - 1| \leq 1$ and $|1 - 2| \leq 1$ but $|0 - 2| > 1$
- Hence R is neither an equivalence nor a partial order.