

Math 2001 - Assignment 11

Due November 14, 2025

(1) Let p_1, p_2, \dots denote the list of all primes. Show that for integers $a = \prod_{i \in \mathbb{N}} p_i^{e_i}, b = \prod_{i \in \mathbb{N}} p_i^{f_i}$ with $e_i, f_i \in \mathbb{N}_0$ for $i \in \mathbb{N}$,

$$\text{lcm}(a, b) = \prod_{i \in \mathbb{N}} p_i^{\max(e_i, f_i)}.$$

(2) Show for all $a, b \in \mathbb{N}$:

$$\text{gcd}(a, b) \cdot \text{lcm}(a, b) = ab$$

Hint: Use the formula for gcd and lcm from class and the previous problem.

Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive. Which are equivalences, which partial orders?

- (3) \neq on \mathbb{Z}
- (4) \subseteq on the power set $P(A)$ of a set A
- (5) $|$ (divides) on \mathbb{N}
- (6) $R = \{(x, y) \in \mathbb{R} : |x - y| \leq 1\}$