Math 2001 - Assignment 4

Due September 26, 2025

(1) (a) How many different truthtables (Boolean functions) are there for 2 statements x_1, x_2 ? How many for k statements x_1, \ldots, x_k ?

(b) Let $f(x_1, x_2, x_3)$ be a Boolean function that is true for the following assignments and false otherwise.

Write an expression for $f(x_1, x_2, x_3)$ using only \land, \lor, \sim .

Solution

(a) A truthtable for 2 statements x_1, x_2 has $2^2 = 4$ rows. For each row we can choose either true or false. Hence we have 2^4 options to make a truthtable.

A truthtable for k statements x_1, \ldots, x_k has 2^k rows. Hence there are 2^{2^k} such tables.

(b) $f(x_1, x_2, x_3)$ and $(x_1 \wedge x_2 \wedge \sim x_3) \vee (x_1 \wedge \sim x_2 \wedge x_3) \vee (\sim x_1 \wedge x_2 \wedge x_3)$ are true at exactly the same assignments. Hence they are equal.

(2) [1, Section 2.7]: Exercises 4,6,7,9,10. Also give the negation of the corresponding statements.

Solution:

4. For all elements X in the powerset of \mathbb{N} , we have that X is a subset of \mathbb{R} . Every subset of \mathbb{N} is a subset of \mathbb{R} .

True since $\mathbb{N} \subseteq \mathbb{R}$

Negation: $\exists X \in P(\mathbb{N}), \ X \not\subseteq \mathbb{R}$

6. There exists a natural number n such that every subset of $\mathbb N$ has less than n elements.

False, $\{1, \ldots, n\}$ is a subset with n elements

Negation: $\forall n \in \mathbb{N} \exists X \in P(\mathbb{N}), |X| \geq n$

7. For every subset X of N there exists an integer n such that X has size n.

False, $X = \mathbb{N}$ is a subset of \mathbb{N} of infinite size.

Negation: $\exists X \subseteq \mathbb{N} \ \forall n \in \mathbb{Z} : \ |X| \neq n$

9. For every integer n there exists an integer m such that m = n + 5.

True, m = n + 5 is the integer we are looking for.

Negation: $\exists n \in \mathbb{Z} \forall m \in \mathbb{Z} : m \neq n+5$

10. There exists an integer m for every n such that m = n + 5.

False, the same number m cannot work for n=0 and n=1.

Negation: $\forall m \in \mathbb{Z} \forall \exists n \in \mathbb{Z} : m \neq n+5$

(3) Formulate the following sentences using quantifiers and logical operations. Are they true? Negate them.

(a) For all integers n we have that n(n+1) is even.

Solution $\forall n \in \mathbb{Z} \ n(n+1)$ is even.

True because one of n or n+1 is even.

Negation: $\exists n \in \mathbb{Z} \ n(n+1)$ is odd.

(b) There exists a real number z such that x + z = x for every real x.

Solution $\exists z \in \mathbb{R} \forall x \in \mathbb{R} \ x + z = x$

True for z = 0.

Negation: $\forall z \in \mathbb{R} \ \exists x \in \mathbb{R} \ x + z \neq z$

(c) Every real number is smaller than some integer.

Solution $\forall x \in \mathbb{R} \exists z \in \mathbb{Z} \ x < z$

True.

Negation: $\exists x \in \mathbb{R} \forall x \in \mathbb{Z} \ x \geq z$

- (4) Negate the following sentences. Are they true?
 - (a) If x^2 is rational, then so is x.

Solution $x^2 \in \mathbb{Q} \Rightarrow x \in \mathbb{Q}$.

False, e.g., $2 \in \mathbb{Q}$ and $\sqrt{2} \notin Q$

Negation: $x^2 \in \mathbb{Q}$ and $x \notin \mathbb{Q}$.

(b) xy = 0 iff x = 0 or y = 0

True, Negation $xy \neq 0$ iff x = 0 or y = 0

xy = 0 iff $x \neq 0$ and $y \neq 0$

(c) The derivative of a polynomial function f is 0 iff f is constant.

True, Negation: The derivative of a polynomial function f is 0 iff f is not constant.

(d) $\exists x \in \mathbb{R} : x^2 = -1$

False, Negation: $\forall x \in \mathbb{R} : x^2 \neq -1$

(e) $\forall r \in \mathbb{R} : \sin(r\pi) = 0 \Leftrightarrow r \text{ is an integer}$

Negation: $\exists r \in \mathbb{R} : \sin(r\pi) = 0 \text{ iff } r \text{ is not an integer}$

- (5) True or false? Give a proof or a counter-example:
 - (a) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y = 1$

False, counter-example: x=y=0

(b) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x + y = 1$

True: for $x \in \mathbb{R}$ we have y = 1 - x such that x + y = 1

(c) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y = 1$

False: Suppose we have such a fixed $x \in \mathbb{R}$. Then for y = -x we'd have $x + y = 0 \neq 1$. Hence there cannot be a single x that makes x + y = 1 true for all $y \in \mathbb{R}$.

(d) $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x + y = 1$

True: e.g. x = 0, y = 1

- (6) Write as complete English sentences. True or false? Negate:
 - (a) $\forall a \in \mathbb{R} \ \exists b \in \mathbb{R} \ \forall c \in \mathbb{R} : \ a < b \Rightarrow c < b$

Solution: For all $a \in \mathbb{R}$ there exists $b \in \mathbb{R}$ such that for all $c \in \mathbb{R}$, if a < b then c < b.

True: Let $a \in \mathbb{R}$ arbitrary. Next choose $b \in \mathbb{R}$ such that $a \not< b$, say b = a. Then $\forall c \in \mathbb{R} : a < b \Rightarrow c < b$ is true. (Note that by the choice of b, the assumption a < b of the implication is false. Hence FALSE $\Rightarrow c < b$ is true.)

Negation: $\exists a \in \mathbb{R} \ \forall b \in \mathbb{R} \ \exists c \in \mathbb{R} : \ a < b \land b \leq c$.

Note that the negation is clearly false. Hence again the original statement must be true!

(b) \forall set $A \forall$ set $B \exists$ set $C : A \cup B = C$.

Solution: For all sets A and B there exists a set C that is the union of A and В.

True by Axiom of Unions in Zermelo-Fraenkel Set Theory.

Negation: \exists set $A \exists$ set $B \forall$ set $C : A \cup B \neq C$.

There exist sets A and B whose union is not a set.

(c) $\forall x, y \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists \delta > 0 : |x - y| < \varepsilon \Rightarrow |2x - 2y| < \delta$

Solution: For all reals x, y and every $\epsilon > 0$ there exists a $\delta > 0$ such that $|x-y| < \varepsilon$ implies $|2x-2y| < \delta$.

True for $\delta = 2\varepsilon$.

Negation: $\exists x, y \in \mathbb{R} \ \exists \varepsilon > 0 \ \forall \delta > 0 : |x - y| < \varepsilon \land |2x - 2y| \ge \delta$.

- (d) Simplify:
 - (i) $\bigcup_{i=0}^{4} [i, 2i+1]$
 - (ii) $\bigcap_{n\in\mathbb{N}}^{i-0} \{x \in \mathbb{Z} : x \ge n\}$ (iii) $\bigcup_{x\in[0,1]}^{i-0} \{x\} \times [1,2]$

 - (iv) $\bigcup_{x \in [0,1]} \{x\} \times [0,x]$

Solution.

- $\begin{array}{l} \text{(i)} \ \bigcup_{i=0}^4 \ [i,2i+1] = [0,1] \cup [1,3] \cup \cdots \cup [4,9] = [0,9] \\ \text{(ii)} \ \bigcap_{n \in \mathbb{N}} \ \{x \in \mathbb{Z} : x \geq n\} = \{1,2,3,\ldots\} \cap \{2,3,4,\ldots\} \cap \{3,4,\ldots\} \cap \cdots = \emptyset \end{array}$ since no integer x is greater than every natural number n
- (iii) $\bigcup_{x \in [0,1]} \{x\} \times [1,2] = \{(x,y) : x \in [0,1], y \in [1,2]\} = [0,1] \times [1,2]$
- 1}

References

[1] Richard Hammack. The Book of Proof. Creative Commons, 2nd edition, 2013. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/