Math 2001 - Assignment 2

Due September 12, 2025

(1) For
$$U := \{x \in \mathbb{Z} : 1 \le x \le 8\}$$
,
 $A = \{1, 2, 3, 4, 5\}$,
 $B = \{x \in U : x \text{ is even }\}$,
 $C = \{x \in U : x \ge 4\}$ compute:
(a) $A \cap \bar{B}$ (b) $A \cup (B \cap C)$ (c) $(A - B) \cup B$

Solution.

$$A \cap \bar{B} = \{1, 3, 5\}$$

$$A \cup (B \cap C) = \{1, 2, 3, 4, 5, 6, 8\}$$

$$(A - B) \cup B = A \cup B = \{1, 2, 3, 4, 5, 6, 8\}$$

- (2) Are the following true for all sets A, B in a universe U?
 - (a) A B = B A
 - (b) $A \cup B \subseteq (A \cap \bar{B}) \cup (B \cap \bar{A})$

Consider Venn diagrams first and then either write a proof that the equations hold or give an example where they fail.

Solution.

- (a) A B = B A is false. One counterexample is $A = \{1\}, B = \emptyset$
- (b) $A \cup B \subseteq (A \cap \overline{B}) \cup (B \cap \overline{A})$ is false. One counterexample is $A = B = \{1\}$.
- (3) Show that for all sets A, B, C

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

without Venn diagrams.

Recall that we already showed that the lefthand side is contained in the righthand side. So it only remains to write a proof for the converse,

$$(A \cup B) \cap C \supseteq (A \cap C) \cup (B \cap C).$$

Solution.

Let $x \in (A \cap C) \cup (B \cap C)$. By the definition of \cup we have $x \in (A \cap C)$ or $x \in (B \cap C)$ and hence 2 cases to consider:

Case 1, $x \in (A \cap C)$: Then $x \in A$ and $x \in C$ by the definition of \cap . Since $x \in A$, we also have $x \in A \cup B$. Together with $x \in C$ this implies that $x \in (A \cup B) \cap C$.

Case 2, $x \in (B \cap C)$: Similar to case 1.

In either case $x \in (A \cup B) \cap C$. Hence we proved that $(A \cap B) \cap C$. $(C) \cup (B \cap C) \subseteq (A \cup B) \cap C$

(4) Show for all sets A, B in the universe U:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 (de Morgan's law)

First use Venn diagrams. Then write down a proof.

Solution.

Proof of $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$: Let $x \in \overline{A \cup B}$. Then $x \notin A \cup B$, which yields that $x \notin A$ and $x \notin B$. Hence $x \in \bar{A}$ and $x \in \cap \bar{B}$. Thus $x \in A \cap B$.

Proof of $\overline{A \cup B} \supset \overline{A} \cap \overline{B}$: Let $x \in \overline{A} \cap \overline{B}$. Then $x \in \overline{A}$ and $x \in \overline{B}$. Equivalently $x \notin A$ and $x \notin B$. But then $x \notin A \cup B$, which yields $x \in A \cup B$.

(5) Show that for all sets A, B in the universe U:

$$\overline{A} - \overline{B} = B - A$$

First consider Venn diagrams. Then write down the proof.

Solution.

Show $\bar{A} - \bar{B} \subseteq B - A$: Let $x \in \bar{A} - \bar{B}$. By the definition of -, we have $x \in \bar{A}$ and $x \notin \bar{B}$. By the definition of complement this means $x \notin A$ and $x \in B$. Hence $x \in B - A$.

Show $\bar{A} - \bar{B} \subseteq B - A$: Just reorder the previous argument from bottom to top.

(6) Simplify the following sets and justify your answers: (a) $\bigcup_{n\in\mathbb{N}}(0,n]$ (b) $\bigcap_{n=1}^3\{nz:z\in\mathbb{Z}\}$ (c)

(a)
$$\bigcup_{n\in\mathbb{N}}(0,n]$$

(b)
$$\bigcap_{n=1}^3 \{nz : z \in \mathbb{Z}\}$$

(c)
$$\bigcup_{A \in P(\mathbb{N})} A$$

In (a) we have $(0, n] = \{x \in \mathbb{R} : 0 < x \le n\}$, the real interval from 0 to n that does not contain 0 but contains n.

Solution.

(a) $\bigcup_{n \in \mathbb{N}} (0, n] = (0, 1] \cup (0, 2] \cup (0, 3] \cup \dots = \{x \in \mathbb{R} : x > 0\}$ These sets are equal because every $x \in (0, n]$ for some $n \in \mathbb{N}$ is also in the set on the right hand side. Conversely let $x \in \mathbb{R}$

such that x>0. Then there exists $n\in\mathbb{N}$ such that $x\in(0,n]$.

Hence x is in the set on the left hand side.

(b)
$$\bigcap_{n=1}^{3} \{ nz : z \in \mathbb{Z} \}$$

= $\mathbb{Z} \cap \{ \dots, -2, 0, 2, 4, 6 \dots \} \cap \{ \dots, -3, 0, 3, 6, 9 \dots \}$
= $\{ \dots, -6, 0, 6, 12, 18, \dots \}$
= $\{ 6z : z \in \mathbb{Z} \}$

(c)
$$\bigcup_{A \in P(\mathbb{N})} A = \emptyset \cup \{1\} \cup \{2\} \cup \cdots \cup \{1,2\} \cup \cdots = \mathbb{N}$$

- (7) Simplify the following sets and justify your answers:
 - (c) $\bigcap_{n\in\mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right)$ (a) $\bigcap_{n\in\mathbb{N}} \{nz : z \in \mathbb{Z}\}$ (b) $\bigcup_{x\in\mathbb{R}} [-x, x]$ In (c) we have $\left(-\frac{1}{n}, \frac{1}{n}\right)$ the open interval not containing the end points.
 - **Solution.** (a) $\bigcap_{n\in\mathbb{N}}\{nz:z\in\mathbb{Z}\}=\{0\}$ because 0 is the only integer that is a multiple of every natural number.
 - (b) $\bigcup_{x \in \mathbb{R}} [-x, x] = \mathbb{R}$ because every real x is in some interval of
 - the union, namely [-|x|, |x|]. (c) $\bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, \frac{1}{n}) = \{0\}$ because 0 is the only real number that is contained in every interval $(-\frac{1}{n}, \frac{1}{n})$ for $n \in \mathbb{N}$.