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General approach

A = (A; f1, f2, . . . )A

|A| <∞, idempotent: fi(x , x , . . . , x) = x
having Property PB1

B2

B3

B4

A≥B1A≥B1 ≥B2A≥B1 ≥B2 ≥B3A≥B1 ≥B2 ≥B3 ≥ . . .

Choose a subalgebra B1 with Property P

Choose a subalgebra B2 with Property P

Choose a subalgebra B3 with Property P

Choose a subalgebra B4 with Property P

Ideas:

1. Choose strong subalgebras

preserving property P

2. When Bi is small enough

derive a contradiction or required fact.
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Three claims

Claim 1 [M. Maróti and R. Mckenzie, 2008]

Every finite idempotent algebra A

1. has a WNU* term operation, or
* w(y , x , . . . , x) = w(x , y , x , . . . , x) = · · · = w(x , . . . , x , y)

2. has essentially unary C ∈ HSP(A).

Claim 2 [M. Kozik, A. Krokhin, M. Valeriote, R. Willard, 2015]

Every finite idempotent algebra A with bounded width has a WNU
term operation of every arity greater than two.

Claim 3 [M. Kozik. 2016]

Every cycle-consistent ((2, 3)-consistent) CSP instance I over a
constraint language with bounded width has a solution.
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Claim 1 [M. Maróti and R. Mckenzie, 2008]

Every finite idempotent algebra A

1. has a WNU* term operation, or
* w(y , x , . . . , x) = w(x , y , x , . . . , x) = · · · = w(x , . . . , x , y)

2. has essentially unary C ∈ HSP(A).

Claim 2 [M. Kozik, A. Krokhin, M. Valeriote, R. Willard, 2015]

Every finite idempotent algebra A with bounded width has a WNU
term operation of every arity greater than two.

Claim 3 [M. Kozik. 2016]

Every cycle-consistent ((2, 3)-consistent) CSP instance I over a
constraint language with bounded width has a solution.



Three claims
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Absorbing subuniverse

A

B

B is an absorbing subuniverse if there exists a
term operation such that

t(B, . . . ,B,A,B, . . . ,B) ⊆ B.

I If t is binary then B is a binary absorbing
subuniverse

Examples

1. {1} is s binary absorbing subuniverse in
({0, 1},∨).

2. {2, 3} is a binary absorbing subuniverse in
({0, 1, 2, 3},max).

3. {2} is an absorbing subuniverse in
({0, 1, 2, 3},majority).
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Five types of Strong Subuniverses

Theorem
Every finite idempotent algebra A has

1. a binary absorbing subuniverse B, or

2. a center B, i.e. an absorbing subuniverse s.t.
∀a ∈ A \ B : (a, a) /∈ SgA2(({a} × B) ∪ (B × {a}))

3. a linear subuniverse B, i.e a block of a congruence σ s.t.
A/σ is an affine square-free algebra, i.e.
I there exists (A/σ;⊕) ∼= (Zp1 × · · · × Zps ; +)
I (x1 ⊕ x2 = x3 ⊕ x4) ∈ Inv(A/σ)
I x1 ⊕ · · · ⊕ xk ∈ Clo(A/σ)

4. a PC subuniverse B, i.e. a block of a congruence σ s.t.
A/σ ∼= A1 × · · · × As , where each Ai is a Polynomially
Complete (PC) algebra without binary absorption or center.

5. a CBT (Cube Term Blocker) subuniverse B, i.e.
An \ (A \ B)n ∈ Inv(A) for every n.



Five types of Strong Subuniverses

Theorem
Every finite idempotent algebra A has

1. a binary absorbing subuniverse B, or

2. a center B, i.e. an absorbing subuniverse s.t.
∀a ∈ A \ B : (a, a) /∈ SgA2(({a} × B) ∪ (B × {a}))

3. a linear subuniverse B, i.e a block of a congruence σ s.t.
A/σ is an affine square-free algebra, i.e.
I there exists (A/σ;⊕) ∼= (Zp1 × · · · × Zps ; +)
I (x1 ⊕ x2 = x3 ⊕ x4) ∈ Inv(A/σ)
I x1 ⊕ · · · ⊕ xk ∈ Clo(A/σ)

4. a PC subuniverse B, i.e. a block of a congruence σ s.t.
A/σ ∼= A1 × · · · × As , where each Ai is a Polynomially
Complete (PC) algebra without binary absorption or center.

5. a CBT (Cube Term Blocker) subuniverse B, i.e.
An \ (A \ B)n ∈ Inv(A) for every n.



Five types of Strong Subuniverses

Theorem
Every finite idempotent algebra A has

1. a binary absorbing subuniverse B, or

2. a center B, i.e. an absorbing subuniverse s.t.
∀a ∈ A \ B : (a, a) /∈ SgA2(({a} × B) ∪ (B × {a}))

3. a linear subuniverse B, i.e a block of a congruence σ s.t.
A/σ is an affine square-free algebra, i.e.
I there exists (A/σ;⊕) ∼= (Zp1 × · · · × Zps ; +)
I (x1 ⊕ x2 = x3 ⊕ x4) ∈ Inv(A/σ)
I x1 ⊕ · · · ⊕ xk ∈ Clo(A/σ)

4. a PC subuniverse B, i.e. a block of a congruence σ s.t.
A/σ ∼= A1 × · · · × As , where each Ai is a Polynomially
Complete (PC) algebra without binary absorption or center.

5. a CBT (Cube Term Blocker) subuniverse B, i.e.
An \ (A \ B)n ∈ Inv(A) for every n.



Five types of Strong Subuniverses

Theorem
Every finite idempotent algebra A has

1. a binary absorbing subuniverse B, or

2. a center B, i.e. an absorbing subuniverse s.t.
∀a ∈ A \ B : (a, a) /∈ SgA2(({a} × B) ∪ (B × {a}))

3. a linear subuniverse B, i.e a block of a congruence σ s.t.
A/σ is an affine square-free algebra, i.e.
I there exists (A/σ;⊕) ∼= (Zp1 × · · · × Zps ; +)
I (x1 ⊕ x2 = x3 ⊕ x4) ∈ Inv(A/σ)
I x1 ⊕ · · · ⊕ xk ∈ Clo(A/σ)

4. a PC subuniverse B, i.e. a block of a congruence σ s.t.
A/σ ∼= A1 × · · · × As , where each Ai is a Polynomially
Complete (PC) algebra without binary absorption or center.

5. a CBT (Cube Term Blocker) subuniverse B, i.e.
An \ (A \ B)n ∈ Inv(A) for every n.



Five types of Strong Subuniverses

Theorem
Every finite idempotent algebra A has

1. a binary absorbing subuniverse B, or

2. a center B, i.e. an absorbing subuniverse s.t.
∀a ∈ A \ B : (a, a) /∈ SgA2(({a} × B) ∪ (B × {a}))

3. a linear subuniverse B, i.e a block of a congruence σ s.t.
A/σ is an affine square-free algebra, i.e.
I there exists (A/σ;⊕) ∼= (Zp1 × · · · × Zps ; +)
I (x1 ⊕ x2 = x3 ⊕ x4) ∈ Inv(A/σ)
I x1 ⊕ · · · ⊕ xk ∈ Clo(A/σ)

4. a PC subuniverse B, i.e. a block of a congruence σ s.t.
A/σ ∼= A1 × · · · × As , where each Ai is a Polynomially
Complete (PC) algebra without binary absorption or center.

5. a CBT (Cube Term Blocker) subuniverse B, i.e.
An \ (A \ B)n ∈ Inv(A) for every n.



Five types of Strong Subuniverses

Theorem
Every finite idempotent algebra A has

1. a binary absorbing subuniverse B, or

2. a center B, i.e. an absorbing subuniverse s.t.
∀a ∈ A \ B : (a, a) /∈ SgA2(({a} × B) ∪ (B × {a}))

3. a linear subuniverse B, i.e a block of a congruence σ s.t.
A/σ is an affine square-free algebra, i.e.
I there exists (A/σ;⊕) ∼= (Zp1 × · · · × Zps ; +)
I (x1 ⊕ x2 = x3 ⊕ x4) ∈ Inv(A/σ)
I x1 ⊕ · · · ⊕ xk ∈ Clo(A/σ)

4. a PC subuniverse B, i.e. a block of a congruence σ s.t.
A/σ ∼= A1 × · · · × As , where each Ai is a Polynomially
Complete (PC) algebra without binary absorption or center.

5. a CBT (Cube Term Blocker) subuniverse B, i.e.
An \ (A \ B)n ∈ Inv(A) for every n.



Properties of strong subalgebras
We write B ≤T A if B is a subuniverse of A of type T
(Here T ∈ {BA(t),C , L,PC})

Theorem
Suppose R ≤sd A1 × · · · × As , Bi ≤T Ai for every i . Then

1. R ∩ (B1 × · · · × Bn) ≤T R

A1 A2 A3

B1 B2 B3
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Lemma 1
Suppose R ≤ Ap is a (nonempty) totally symmetric relation, where
p > |A| is a prime number. Then

1. there exists (a, a, . . . , a) ∈ R, or

2. there exists essentially unary C ∈ HS(A).

Proof

1. Choose B ≤T A.
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Claim 1 [M. Maróti and R. Mckenzie, 2008]

Every finite idempotent algebra A

1. has a WNU* term operation, or
* w(y , x , . . . , x) = w(x , y , x , . . . , x) = · · · = w(x , . . . , x , y)

2. has essentially unary C ∈ HSP(A).

Proof
Consider a free algebra over {x , y} and generate a relation R from

y x . . . x
x y . . . x
...

...
. . .

...
x x . . . y

 .

R is totally symmetric ⇒
I R has a constant tuple ⇒ A has a WNU.

I there exists essentially unary C ∈ HSP(A)



Claim 1 [M. Maróti and R. Mckenzie, 2008]

Every finite idempotent algebra A

1. has a WNU* term operation, or
* w(y , x , . . . , x) = w(x , y , x , . . . , x) = · · · = w(x , . . . , x , y)

2. has essentially unary C ∈ HSP(A).

Proof
Consider a free algebra over {x , y} and generate a relation R from

y x . . . x
x y . . . x
...

...
. . .

...
x x . . . y

 .

R is totally symmetric ⇒
I R has a constant tuple ⇒ A has a WNU.

I there exists essentially unary C ∈ HSP(A)
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Lemma 2
Suppose A is a finite idempotent algebra with bounded width,
R ≤ An is a (nonempty) totally symmetric relation, where n ≥ 3.
Then there exists (a, a, . . . , a) ∈ R.

Claim 2 [M. Kozik, A. Krokhin, M. Valeriote, R. Willard, 2015]

Every finite idempotent algebra A with bounded width has a
WNU* term operation of every arity greater than two.
* w(y , x , . . . , x) = w(x , y , x , . . . , x) = · · · = w(x , . . . , x , y)
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Constraint language

Let Γ be a set of (multi-sorted) relations.
Set of its polymorphism forms an algebra on every domain.

CSP Instance
CSP instance over a constraint language Γ is

R1(. . . ) ∧ R2(. . . ) ∧ · · · ∧ Rs(. . . ),

where each Ri ∈ Γ.
The domain of xi is Ai

Cycle-consistency

Any cycle xi1Rj1xi2Rj2 . . .Rjkxi1 is consistent.

Claim 3 [M. Kozik. 2016]

Every cycle-consistent ((2, 3)-consistent) CSP instance I over a
constraint language with bounded width has a solution.
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it follows from the property

If X1 appears only twice,
then a path is not consistent
(contradicts cycle-consistency)
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Thank you for your attention


