QCSPs on finite groups Work in Progress

K. Kearnes ¹ B. Larose ² B. Martin ³ Á. Szendrei ¹

¹Boulder, CO

²LACIM, UQAM, Montréal

³Durham, UK

Joint Mathematics Meetings Denver, January 2020

A decision problem: *QCSP*(**G**)

Let $\mathbf{G} = \langle \mathbf{G}; \cdot, 1 \rangle$ be a finite group.

 $QCSP(\mathbf{G})$

- Instance: a sentence ∀y₁∃x₁ ··· ∀y_n∃x_nΦ, where Φ is a conjunction of term equations over G;
- Problem: Is the sentence true ?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A decision problem: *QCSP*(**G**)

Let $\mathbf{G} = \langle \mathbf{G}; \cdot, 1 \rangle$ be a finite group.

 $QCSP(\mathbf{G})$

- Instance: a sentence ∀y₁∃x₁ ··· ∀y_n∃x_nΦ, where Φ is a conjunction of term equations over G;
- Problem: Is the sentence true ?

A typical instance of *QCSP*(**G**):

$$\forall x \exists y \forall z \exists w \begin{cases} x^3 y^2 = z \\ z^5 = 1 \\ x^{-1} z^{-4} = y^3 w^6 \end{cases}$$

A decision problem: *QCSP*(**G**)

Let $\mathbf{G} = \langle \mathbf{G}; \cdot, 1 \rangle$ be a finite group.

 $QCSP(\mathbf{G})$

- Instance: a sentence ∀y₁∃x₁ ··· ∀y_n∃x_nΦ, where Φ is a conjunction of term equations over G;
- Problem: Is the sentence true ?

A typical instance of *QCSP*(**G**):

$$\forall x \exists y \forall z \exists w \begin{cases} x^3 y^2 = z \\ z^5 = 1 \\ x^{-1} z^{-4} = y^3 w^6 \end{cases}$$

Complexity: How hard is this ?

< 回 > < 三 > < 三 >

Another decision problem: $QCSP_c(\mathbf{G})$

Let $\mathbf{G} = \langle \mathbf{G}; \cdot, 1 \rangle$ be a finite group.

 $QCSP_c(\mathbf{G})$

- Instance: a sentence ∀y₁∃x₁ ··· ∀y_n∃x_nΦ, where Φ is a conjunction of polynomial equations over G;
- Problem: Is the sentence true ?

A (10) A (10) A (10)

Another decision problem: $QCSP_c(\mathbf{G})$

Let $\mathbf{G} = \langle \mathbf{G}; \cdot, 1 \rangle$ be a finite group.

 $QCSP_c(\mathbf{G})$

 Instance: a sentence ∀y₁∃x₁···∀y_n∃x_nΦ, where Φ is a conjunction of polynomial equations over G;

Problem: Is the sentence true ?

A typical instance of $QCSP_c(\mathbf{G})$ (here $c, d, e, f, g \in \mathbf{G}$):

$$\forall x \exists y \forall z \exists w \begin{cases} cx^3 dy^2 = ez \\ z^5 = f \\ x^{-1}z^{-4} = w^2 y^3 g \end{cases}$$

Kearnes, Larose, Martin, Szendrei

A (10) A (10) A (10)

Another decision problem: $QCSP_c(\mathbf{G})$

Let $\mathbf{G} = \langle \mathbf{G}; \cdot, 1 \rangle$ be a finite group.

 $QCSP_c(\mathbf{G})$

- Instance: a sentence ∀y₁∃x₁···∀y_n∃x_nΦ, where Φ is a conjunction of polynomial equations over G;
- Problem: Is the sentence true ?

A typical instance of $QCSP_c(\mathbf{G})$ (here $c, d, e, f, g \in \mathbf{G}$):

$$\forall x \exists y \forall z \exists w \begin{cases} cx^3 dy^2 = ez \\ z^5 = f \\ x^{-1}z^{-4} = w^2 y^3 g \end{cases}$$

Complexity: How hard is this ?

 the above problems are (logspace-equivalent to) a special case of the general QCSP problem QCSP(Γ) where Γ is a set of finitary relations on a finite domain;

- the above problems are (logspace-equivalent to) a special case of the general QCSP problem QCSP(Γ) where Γ is a set of finitary relations on a finite domain;
- on the other hand, QCSP(G) and QCSP_c(G) generalise the problems CSP(G) and CSP_c(G) (by forbidding the use of ∀):

A B b 4 B b

- the above problems are (logspace-equivalent to) a special case of the general QCSP problem QCSP(Γ) where Γ is a set of finitary relations on a finite domain;
- on the other hand, QCSP(G) and QCSP_c(G) generalise the problems CSP(G) and CSP_c(G) (by forbidding the use of ∀):
 - CSP(G): is a given system of term equations over G satisfiable ?

A B F A B F

- the above problems are (logspace-equivalent to) a special case of the general QCSP problem QCSP(Γ) where Γ is a set of finitary relations on a finite domain;
- on the other hand, QCSP(G) and QCSP_c(G) generalise the problems CSP(G) and CSP_c(G) (by forbidding the use of ∀):
 - CSP(G): is a given system of term equations over G satisfiable ?

Trivial (set every variable to 1)

< 回 > < 回 > < 回 >

- the above problems are (logspace-equivalent to) a special case of the general QCSP problem QCSP(Γ) where Γ is a set of finitary relations on a finite domain;
- on the other hand, QCSP(G) and QCSP_c(G) generalise the problems CSP(G) and CSP_c(G) (by forbidding the use of ∀):
 - CSP(G): is a given system of term equations over G satisfiable ?
 Trivial (set every variable to 1)
 - CSP_c(G): is a given system of polynomial equations over G satisfiable ?

A (10) A (10)

- the above problems are (logspace-equivalent to) a special case of the general QCSP problem QCSP(Γ) where Γ is a set of finitary relations on a finite domain;
- on the other hand, QCSP(G) and QCSP_c(G) generalise the problems CSP(G) and CSP_c(G) (by forbidding the use of ∀):
 - CSP(G): is a given system of term equations over G satisfiable ?
 Trivial (set every variable to 1)
 - CSP_c(G): is a given system of polynomial equations over G satisfiable ?

★ in P if **G** is Abelian, NP-c otherwise. (Goldmann, Russell, 2002).

A (10) A (10)

- the above problems are (logspace-equivalent to) a special case of the general QCSP problem QCSP(Γ) where Γ is a set of finitary relations on a finite domain;
- on the other hand, QCSP(G) and QCSP_c(G) generalise the problems CSP(G) and CSP_c(G) (by forbidding the use of ∀):
 - CSP(G): is a given system of term equations over G satisfiable ?
 Trivial (set every variable to 1)
 - CSP_c(G): is a given system of polynomial equations over G satisfiable ?
 - * in P if G is Abelian, NP-c otherwise. (Goldmann, Russell, 2002).
 - Intriguing (same authors): deciding satisfiability of a *single* equation is NP-c for non-solvable groups, in P for nilpotent groups (and otherwise still open).

 because our problems are equivalent to problems of the form QCSP(Γ), known tools can be used:

伺下 イヨト イヨ

- because our problems are equivalent to problems of the form QCSP(Γ), known tools can be used:
- complexity is controlled by the onto polymorphisms of the constraint relations (BBCJK, 2009):

- because our problems are equivalent to problems of the form QCSP(Γ), known tools can be used:
- complexity is controlled by the onto polymorphisms of the constraint relations (BBCJK, 2009):
- in our context, the constraint relation is γ_G = {(x, y, z) : xy = z} together with singleton unary relations for QCSP_c(G), and thus the "polymorphisms" are:

- because our problems are equivalent to problems of the form QCSP(Γ), known tools can be used:
- complexity is controlled by the onto polymorphisms of the constraint relations (BBCJK, 2009):
- in our context, the constraint relation is γ_G = {(x, y, z) : xy = z} together with singleton unary relations for QCSP_c(G), and thus the "polymorphisms" are:
 - the onto group homomorphisms $f : \mathbf{G}^n \to \mathbf{G}$ for $QCSP(\mathbf{G})$,

A (10) A (10)

- because our problems are equivalent to problems of the form QCSP(Γ), known tools can be used:
- complexity is controlled by the onto polymorphisms of the constraint relations (BBCJK, 2009):
- in our context, the constraint relation is γ_G = {(x, y, z) : xy = z} together with singleton unary relations for QCSP_c(G), and thus the "polymorphisms" are:
 - the onto group homomorphisms $f : \mathbf{G}^n \to \mathbf{G}$ for $QCSP(\mathbf{G})$,
 - the idempotent group homomorphisms f : Gⁿ → G for QCSP_c(G), i.e. satisfying f(x, x, ..., x) = x for all x ∈ G.

• In general *QCSP*(Γ) is in Pspace;

- In general QCSP(Γ) is in Pspace;
- if the onto polymorphisms are essentially unary then QCSP(Γ) is Pspace-complete (BBCJK, 2009);

- A - TH

4 A N

- In general QCSP(Γ) is in Pspace;
- if the onto polymorphisms are essentially unary then QCSP(Γ) is Pspace-complete (BBCJK, 2009);
- If **G** is non-Abelian, *QCSP_c*(**G**) is NP-hard;

- In general QCSP(Γ) is in Pspace;
- if the onto polymorphisms are essentially unary then QCSP(Γ) is Pspace-complete (BBCJK, 2009);
- If **G** is non-Abelian, *QCSP_c*(**G**) is NP-hard;
 - because of CSP_c(G)

A B F A B F

4 A N

- In general QCSP(Γ) is in Pspace;
- if the onto polymorphisms are essentially unary then QCSP(Γ) is Pspace-complete (BBCJK, 2009);
- If **G** is non-Abelian, *QCSP_c*(**G**) is NP-hard;
 - because of CSP_c(G)
- Clearly $QCSP_c(\mathbf{G})$ is always as hard as $QCSP(\mathbf{G})$.

A B F A B F

A tractable case

Theorem

If **G** is Abelian, then both $QCSP(\mathbf{G})$ and $QCSP_c(\mathbf{G})$ are in *P*.

A tractable case

Theorem

If **G** is Abelian, then both $QCSP(\mathbf{G})$ and $QCSP_c(\mathbf{G})$ are in P.

Proof: If G is Abelian, then the Maltsev operation

$$M(x, y, z) = x - y + z$$

is an idempotent group homomorphism $M : \mathbf{G}^3 \to \mathbf{G}$. By BBCJK, 2009, the presence of a Maltsev polymorphism guarantees tractability.

A tractable case

Theorem

If **G** is Abelian, then both $QCSP(\mathbf{G})$ and $QCSP_c(\mathbf{G})$ are in P.

Proof: If G is Abelian, then the Maltsev operation

$$M(x, y, z) = x - y + z$$

is an idempotent group homomorphism $M : \mathbf{G}^3 \to \mathbf{G}$. By BBCJK, 2009, the presence of a Maltsev polymorphism guarantees tractability.

• At the moment we have no other tractable cases (and there are probably no others (?))

A hardness criterion

Definition

Let **G** be a group, and let θ be a relation on *G*. We say that θ is **definable** on **G** if it can be defined using $\gamma_{\mathbf{G}}$ and = using conjunction, and the existential and universal quantifiers.

A hardness criterion

Definition

Let **G** be a group, and let θ be a relation on *G*. We say that θ is **definable** on **G** if it can be defined using $\gamma_{\mathbf{G}}$ and = using conjunction, and the existential and universal quantifiers.

 Alternatively, θ is definable if and only if it is invariant under all onto group homomorphisms f : Gⁿ → G.

A hardness criterion

Definition

Let **G** be a group, and let θ be a relation on *G*. We say that θ is **definable** on **G** if it can be defined using $\gamma_{\mathbf{G}}$ and = using conjunction, and the existential and universal quantifiers.

- Alternatively, θ is definable if and only if it is invariant under all onto group homomorphisms f : Gⁿ → G.
- For instance, if θ is the congruence determined by the center Z(G), then it is definable:

$$\theta = \{(x, y) : \forall z, xy^{-1}z = zxy^{-1}\}.$$

A D A D A D A

A hardness criterion, continued

 Let θ be an equivalence relation on G, let f be an operation on G that preserves θ. Let f^θ denote the operation induced by f on the θ-blocks, i.e.

$$f^{\theta}(x_1/\theta,\ldots,x_n/\theta)=f(x_1,\ldots,x_n)/\theta.$$

A hardness criterion, continued

 Let θ be an equivalence relation on G, let f be an operation on G that preserves θ. Let f^θ denote the operation induced by f on the θ-blocks, i.e.

$$f^{\theta}(x_1/\theta,\ldots,x_n/\theta)=f(x_1,\ldots,x_n)/\theta.$$

Lemma

Let $\theta \neq G^2$ be a definable equivalence relation on **G**. If f^{θ} is essentially unary for every onto homomorphism $f : \mathbf{G}^n \to \mathbf{G}$ then $QCSP(\mathbf{G})$ is Pspace-complete.

A B F A B F

A hardness criterion, continued

 Let θ be an equivalence relation on G, let f be an operation on G that preserves θ. Let f^θ denote the operation induced by f on the θ-blocks, i.e.

$$f^{\theta}(x_1/\theta,\ldots,x_n/\theta)=f(x_1,\ldots,x_n)/\theta.$$

Lemma

Let $\theta \neq G^2$ be a definable equivalence relation on **G**. If f^{θ} is essentially unary for every onto homomorphism $f : \mathbf{G}^n \to \mathbf{G}$ then $QCSP(\mathbf{G})$ is Pspace-complete.

Proof: This is a straightforward application of results from BBCJK, 2009 and Chen, Mayr 2016.

Strategy

 It seems reasonable at this point to aim for a proof of Pspace-hardness for QCSP(G) for any non-Abelian group;

Strategy

- It seems reasonable at this point to aim for a proof of Pspace-hardness for QCSP(G) for any non-Abelian group;
- A possible strategy: if a definable quotient of G is onto-trivial, by our criterion QCSP(G) is Pspace-complete;

.

Strategy

- It seems reasonable at this point to aim for a proof of Pspace-hardness for QCSP(G) for any non-Abelian group;
- A possible strategy: if a definable quotient of G is onto-trivial, by our criterion QCSP(G) is Pspace-complete;
- Hence it would be interesting to characterise groups that are
- It seems reasonable at this point to aim for a proof of Pspace-hardness for QCSP(G) for any non-Abelian group;
- A possible strategy: if a definable quotient of G is onto-trivial, by our criterion QCSP(G) is Pspace-complete;
- Hence it would be interesting to characterise groups that are
 - onto-trivial, i.e. whose onto homomorphisms are all essentially unary;

- It seems reasonable at this point to aim for a proof of Pspace-hardness for QCSP(G) for any non-Abelian group;
- A possible strategy: if a definable quotient of G is onto-trivial, by our criterion QCSP(G) is Pspace-complete;
- Hence it would be interesting to characterise groups that are
 - onto-trivial, i.e. whose onto homomorphisms are all essentially unary;
 - idempotent trivial, i.e. whose idempotent homomorphisms are are projections.

A B b 4 B b

- It seems reasonable at this point to aim for a proof of Pspace-hardness for QCSP(G) for any non-Abelian group;
- A possible strategy: if a definable quotient of G is onto-trivial, by our criterion QCSP(G) is Pspace-complete;
- Hence it would be interesting to characterise groups that are
 - onto-trivial, i.e. whose onto homomorphisms are all essentially unary;
 - idempotent trivial, i.e. whose idempotent homomorphisms are are projections.
- Stumbling blocks: direct products, nilpotent groups (more on this later);

A (10) A (10)

- It seems reasonable at this point to aim for a proof of Pspace-hardness for QCSP(G) for any non-Abelian group;
- A possible strategy: if a definable quotient of G is onto-trivial, by our criterion QCSP(G) is Pspace-complete;
- Hence it would be interesting to characterise groups that are
 - onto-trivial, i.e. whose onto homomorphisms are all essentially unary;
 - idempotent trivial, i.e. whose idempotent homomorphisms are are projections.
- Stumbling blocks: direct products, nilpotent groups (more on this later);
- from now on, most of the work is group-theoretic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- It seems reasonable at this point to aim for a proof of Pspace-hardness for QCSP(G) for any non-Abelian group;
- A possible strategy: if a definable quotient of G is onto-trivial, by our criterion QCSP(G) is Pspace-complete;
- Hence it would be interesting to characterise groups that are
 - onto-trivial, i.e. whose onto homomorphisms are all essentially unary;
 - idempotent trivial, i.e. whose idempotent homomorphisms are are projections.
- Stumbling blocks: direct products, nilpotent groups (more on this later);
- from now on, most of the work is group-theoretic.
- Notation: [A, B] = subgroup generated by the *aba⁻¹b⁻¹*;
 G' = [G, G].

Definition

Let **G** be a group. Let $f : \mathbf{G}^n \to \mathbf{G}$ be an onto homomorphism. For each $1 \le i \le n$, let

•
$$f_i(x) = f(1, 1, ..., 1, x, 1, ..., 1)$$
 (x in *i* – *th* position),

• let **A**_{*i*} be the image of *f*_{*i*} in **G**.

A > + = + + =

Definition

Let **G** be a group. Let $f : \mathbf{G}^n \to \mathbf{G}$ be an onto homomorphism. For each $1 \le i \le n$, let

- $f_i(x) = f(1, 1, ..., 1, x, 1, ..., 1)$ (*x* in *i th* position),
- let **A**_i be the image of f_i in **G**.

The following observations are fairly straightforward:

Lemma

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let **G** be a group. Let $f : \mathbf{G}^n \to \mathbf{G}$ be an onto homomorphism. For each $1 \le i \le n$, let

•
$$f_i(x) = f(1, 1, ..., 1, x, 1, ..., 1)$$
 (x in *i* – *th* position),

• let **A**_i be the image of f_i in **G**.

The following observations are fairly straightforward:

Lemma

• Each
$$f_i$$
 is an endomorphism of **G**, and $f(x_1, \ldots, x_n) = f_1(x_1) \cdots f_n(x_n);$

Definition

Let **G** be a group. Let $f : \mathbf{G}^n \to \mathbf{G}$ be an onto homomorphism. For each $1 \le i \le n$, let

•
$$f_i(x) = f(1, 1, ..., 1, x, 1, ..., 1)$$
 (x in *i* – *th* position),

• let **A**_i be the image of f_i in **G**.

The following observations are fairly straightforward:

Lemma

• Each
$$f_i$$
 is an endomorphism of **G**, and $f(x_1, \ldots, x_n) = f_1(x_1) \cdots f_n(x_n);$

$$2 \quad \bigvee \mathbf{A}_i = \mathbf{G};$$

Definition

Let **G** be a group. Let $f : \mathbf{G}^n \to \mathbf{G}$ be an onto homomorphism. For each $1 \le i \le n$, let

•
$$f_i(x) = f(1, 1, ..., 1, x, 1, ..., 1)$$
 (x in *i* – *th* position),

• let **A**_i be the image of f_i in **G**.

The following observations are fairly straightforward:

Lemma

• Each
$$f_i$$
 is an endomorphism of **G**, and $f(x_1, \ldots, x_n) = f_1(x_1) \cdots f_n(x_n);$

$$\mathbf{2} \quad \bigvee \mathbf{A}_i = \mathbf{G}_i$$

3
$$[\mathbf{A}_i, \mathbf{A}_j] = 1$$
 and $\mathbf{A}_i \cap \mathbf{A}_j \leq Z(\mathbf{G})$ if $i \neq j$;

Definition

Let **G** be a group. Let $f : \mathbf{G}^n \to \mathbf{G}$ be an onto homomorphism. For each $1 \le i \le n$, let

•
$$f_i(x) = f(1, 1, ..., 1, x, 1, ..., 1)$$
 (x in *i* – *th* position),

• let **A**_i be the image of f_i in **G**.

The following observations are fairly straightforward:

Lemma

• Each
$$f_i$$
 is an endomorphism of **G**, and $f(x_1, \ldots, x_n) = f_1(x_1) \cdots f_n(x_n);$

$$\mathbf{2} \quad \bigvee \mathbf{A}_i = \mathbf{G};$$

3
$$[\mathbf{A}_i, \mathbf{A}_j] = 1$$
 and $\mathbf{A}_i \cap \mathbf{A}_j \leq Z(\mathbf{G})$ if $i \neq j$;

• if f_j is onto then $\mathbf{A}_i \leq Z(\mathbf{G})$ for all $i \neq j$.

Theorem

Let **G** be a group. Then the following are equivalent:

Kearnes, Larose, Martin, Szendrei

Theorem

Let G be a group. Then the following are equivalent:

G is directly indecomposable;

A .

- B

Theorem

Let G be a group. Then the following are equivalent:

- **G** is directly indecomposable;
- 2) for each onto $f : \mathbf{G}^n \to \mathbf{G}$ there exists some i such that f_i is onto;

Theorem

Let G be a group. Then the following are equivalent:

- G is directly indecomposable;
- 2) for each onto $f : \mathbf{G}^n \to \mathbf{G}$ there exists some i such that f_i is onto;
- If or any homomorphic images H_i of G, if G is a homomorphic image of ∏ H_i then there exists some i such that H_i ≃ G.

Theorem

Let G be a group. Then the following are equivalent:

- G is directly indecomposable;
- 2) for each onto $f : \mathbf{G}^n \to \mathbf{G}$ there exists some i such that f_i is onto;
- If or any homomorphic images H_i of G, if G is a homomorphic image of ∏ H_i then there exists some i such that H_i ≃ G.

Notes on proof:

Theorem

Let G be a group. Then the following are equivalent:

- **G** is directly indecomposable;
- 2) for each onto $f : \mathbf{G}^n \to \mathbf{G}$ there exists some i such that f_i is onto;
- for any homomorphic images H_i of G, if G is a homomorphic image of $\prod H_i$ then there exists some i such that $H_i \simeq G$.

Notes on proof:

• the non-trivial part is (1) \implies (2), rest is easy;

Theorem

Let G be a group. Then the following are equivalent:

- **G** is directly indecomposable;
- 2) for each onto $f : \mathbf{G}^n \to \mathbf{G}$ there exists some i such that f_i is onto;
- for any homomorphic images H_i of G, if G is a homomorphic image of $\prod H_i$ then there exists some i such that $H_i \simeq G$.

Notes on proof:

- the non-trivial part is (1) \implies (2), rest is easy;
- main idea for ¬(2) ⇒ ¬(1): iterate applications of all the *f_i* on **G** to produce a non-trivial normal retract, i.e. a non-trivial direct factor.

Theorem

Let **G** be a group, |G| > 2. Then the following are equivalent:

Theorem

Let **G** be a group, |G| > 2. Then the following are equivalent:

G is 2-idempotent trivial;

Theorem

Let **G** be a group, |G| > 2. Then the following are equivalent:

- G is 2-idempotent trivial;
- G is idempotent-trivial;

A (10) A (10) A (10)

Theorem

Let **G** be a group, |G| > 2. Then the following are equivalent:

- G is 2-idempotent trivial;
- G is idempotent-trivial;
- G is onto-trivial;

< 6 b

.

Theorem

Let **G** be a group, |G| > 2. Then the following are equivalent:

- G is 2-idempotent trivial;
- 2 G is idempotent-trivial;
- G is onto-trivial;
- **③ G** is directly indecomposable, and if $\alpha : \mathbf{G} \to Z(\mathbf{G})$ then $\alpha = 1$;

Theorem

Let **G** be a group, |G| > 2. Then the following are equivalent:

- G is 2-idempotent trivial;
- 2 G is idempotent-trivial;
- G is onto-trivial;
- **③ G** is directly indecomposable, and if $\alpha : \mathbf{G} \to Z(\mathbf{G})$ then $\alpha = 1$;
- **6** G is directly indecomposable, and gcd(G/G', Z(G)) = 1.

Theorem

Let **G** be a group, |G| > 2. Then the following are equivalent:

- G is 2-idempotent trivial;
- 2 G is idempotent-trivial;
- G is onto-trivial;
- **③ G** is directly indecomposable, and if $\alpha : \mathbf{G} \to Z(\mathbf{G})$ then $\alpha = 1$;
- **6** G is directly indecomposable, and gcd(G/G', Z(G)) = 1.
 - (4) \implies (3): easy, use "crucial" result and Lemma;

Theorem

Let **G** be a group, |G| > 2. Then the following are equivalent:

- G is 2-idempotent trivial;
- 2 G is idempotent-trivial;
- G is onto-trivial;
- **③ G** is directly indecomposable, and if $\alpha : \mathbf{G} \to Z(\mathbf{G})$ then $\alpha = 1$;
- **6** G is directly indecomposable, and gcd(G/G', Z(G)) = 1.
 - (4) \implies (3): easy, use "crucial" result and Lemma;
 - (1) \implies (4):

Theorem

Let **G** be a group, |G| > 2. Then the following are equivalent:

- G is 2-idempotent trivial;
- 2 G is idempotent-trivial;
- G is onto-trivial;
- **③ G** is directly indecomposable, and if $\alpha : \mathbf{G} \to Z(\mathbf{G})$ then $\alpha = 1$;
- **6** G is directly indecomposable, and gcd(G/G', Z(G)) = 1.
 - (4) \implies (3): easy, use "crucial" result and Lemma;
 - (1) \implies (4):
 - if G is decomposable it admits a non-trivial idempotent binary;

Theorem

Let **G** be a group, |G| > 2. Then the following are equivalent:

- G is 2-idempotent trivial;
- **G** is idempotent-trivial;
- G is onto-trivial;
- **③ G** is directly indecomposable, and if $\alpha : \mathbf{G} \to Z(\mathbf{G})$ then $\alpha = 1$;
- **6** G is directly indecomposable, and gcd(G/G', Z(G)) = 1.
 - (4) \implies (3): easy, use "crucial" result and Lemma;
 - (1) \implies (4):
 - if G is decomposable it admits a non-trivial idempotent binary;
 - if $1 \neq \alpha$: **G** \rightarrow *Z*(**G**) then $\sigma(x) = x\alpha(x) \in Aut(\mathbf{G})$ and then $f(x, y) = \sigma^{-1}(x\alpha(y))$ is a non-trivial binary idempotent.

Theorem

Let **G** be a group, |G| > 2. Then the following are equivalent:

- G is 2-idempotent trivial;
- 2 G is idempotent-trivial;
- G is onto-trivial;
- **③ G** is directly indecomposable, and if $\alpha : \mathbf{G} \to Z(\mathbf{G})$ then $\alpha = 1$;
- **6** G is directly indecomposable, and gcd(G/G', Z(G)) = 1.
 - (4) \implies (3): easy, use "crucial" result and Lemma;
 - (1) \implies (4):
 - if G is decomposable it admits a non-trivial idempotent binary;
 - ▶ if $1 \neq \alpha$: **G** → Z(**G**) then $\sigma(x) = x\alpha(x) \in Aut$ (**G**) and then $f(x, y) = \sigma^{-1}(x\alpha(y))$ is a non-trivial binary idempotent.

These groups are non-Abelian, e.g. centreless directly indecomposable groups; there are others, e.g. SL_n(𝔽).

A first hardness result

Theorem

If **G** is a directly indecomposable non-Abelian group, then QCSP(G) is Pspace-complete.

A (10) A (10) A (10)

A first hardness result

Theorem

If **G** is a directly indecomposable non-Abelian group, then QCSP(**G**) is Pspace-complete.

Proof: Let $f : \mathbf{G}^n \to \mathbf{G}$ be onto; by our "crucial" result, **G** indecomposable implies there exists an index *j* such that f_j in onto. By our remarks in the Lemma, it follows that $\mathbf{A}_i \leq Z(\mathbf{G})$ for all $i \neq j$. Then

$$f^{ heta}(x_1\mathbf{Z},\ldots,x_n\mathbf{Z})=f(x_1,\ldots,x_n)\mathbf{Z}=f_1(x_1)\cdots f_n(x_n)\mathbf{Z}=f_j(x_j)\mathbf{Z}$$

so f^{θ} is essentially unary. We saw earlier that the congruence θ associated to $Z(\mathbf{G})$ is definable, and $\theta \neq G^2$ since **G** is not Abelian; hence by our hardness criterion, we are done.

A (10) A (10)

Lemma

If G is centerless then QCSP(G) is Pspace-complete.

Lemma

If G is centerless then QCSP(G) is Pspace-complete.

Sketch of proof:

Lemma

If G is centerless then QCSP(G) is Pspace-complete.

Sketch of proof:

 Induction on the number of direct factors; if G indecomposable previous result applies;

・ コ ト ・ 留 ト ・ ヨ ト ・ ヨ ト

Lemma

If G is centerless then QCSP(G) is Pspace-complete.

Sketch of proof:

- Induction on the number of direct factors; if G indecomposable previous result applies;
- fix an onto $f : \mathbf{G}^n \to \mathbf{G}$;

・ コ ト ・ 留 ト ・ ヨ ト ・ ヨ ト

Lemma

If **G** is centerless then QCSP(**G**) is Pspace-complete.

Sketch of proof:

- Induction on the number of direct factors; if G indecomposable previous result applies;
- fix an onto $f : \mathbf{G}^n \to \mathbf{G}$;
- Krull-Remak-Schmidt Theorem: asserts the uniqueness of internal direct decomposition of G into indecomposable factors H_i;
A second hardness result

Lemma

If **G** is centerless then QCSP(**G**) is Pspace-complete.

Sketch of proof:

- Induction on the number of direct factors; if G indecomposable previous result applies;
- fix an onto $f : \mathbf{G}^n \to \mathbf{G}$;
- Krull-Remak-Schmidt Theorem: asserts the uniqueness of internal direct decomposition of G into indecomposable factors H_j;
- arguing on the H_j as we did with the A_i, and because G centreless, we obtain another decomposition of G;

A second hardness result

Lemma

If **G** is centerless then QCSP(**G**) is Pspace-complete.

Sketch of proof:

- Induction on the number of direct factors; if G indecomposable previous result applies;
- fix an onto $f : \mathbf{G}^n \to \mathbf{G}$;
- Krull-Remak-Schmidt Theorem: asserts the uniqueness of internal direct decomposition of G into indecomposable factors H_j;
- arguing on the H_j as we did with the A_i, and because G centreless, we obtain another decomposition of G;
- by using Remak again, we obtain that each f_i preserves each H_j; ("easy" reduction if a H_j is a hom image of another)

ヘロア 人間 アメヨアメヨア 三田

A second hardness result

Lemma

If **G** is centerless then QCSP(**G**) is Pspace-complete.

Sketch of proof:

- Induction on the number of direct factors; if G indecomposable previous result applies;
- fix an onto $f : \mathbf{G}^n \to \mathbf{G}$;
- Krull-Remak-Schmidt Theorem: asserts the uniqueness of internal direct decomposition of G into indecomposable factors H_j;
- arguing on the H_j as we did with the A_i, and because G centreless, we obtain another decomposition of G;
- by using Remak again, we obtain that each f_i preserves each H_j; ("easy" reduction if a H_j is a hom image of another)
- hence we may quotient out (any) one of the H_j.

ヘロア 人間 アメヨアメヨア 三田

Definition

Let **G** be a group. $Z^{i}(\mathbf{G})$, the *i*-th center of **G**, is:

▲ 同 ▶ → 三 ▶

Definition

Let **G** be a group. $Z^i(\mathbf{G})$, the *i*-th center of **G**, is: • $Z^1(\mathbf{G}) = Z(\mathbf{G})$,

A (10) A (10) A (10)

Definition

Let **G** be a group. $Z^{i}(\mathbf{G})$, the *i*-th center of **G**, is:

- $Z^1(G) = Z(G)$,
- for all i ≥ 1, Zⁱ⁺¹(G) is the inverse image of Z(G/Zⁱ(G)) under the natural homomorphism from G onto G/Zⁱ(G).

Definition

Let **G** be a group. $Z^{i}(\mathbf{G})$, the *i*-th center of **G**, is:

- $Z^1(G) = Z(G),$
- for all i ≥ 1, Zⁱ⁺¹(G) is the inverse image of Z(G/Zⁱ(G)) under the natural homomorphism from G onto G/Zⁱ(G).

Definition

The group **G** is **nilpotent** if Z^i (**G**) = **G** for some $i \ge 1$.

A (10) A (10)

Definition

Let **G** be a group. $Z^{i}(\mathbf{G})$, the *i*-th center of **G**, is:

- $Z^1(G) = Z(G)$,
- for all i ≥ 1, Zⁱ⁺¹(G) is the inverse image of Z(G/Zⁱ(G)) under the natural homomorphism from G onto G/Zⁱ(G).

Definition

The group **G** is **nilpotent** if
$$Z^{i}(\mathbf{G}) = \mathbf{G}$$
 for some $i \ge 1$.

Lemma

< ロ > < 同 > < 回 > < 回 >

Definition

Let **G** be a group. $Z^{i}(\mathbf{G})$, the *i*-th center of **G**, is:

- $Z^1(G) = Z(G)$,
- for all i ≥ 1, Zⁱ⁺¹(G) is the inverse image of Z(G/Zⁱ(G)) under the natural homomorphism from G onto G/Zⁱ(G).

Definition

The group **G** is **nilpotent** if $Z^i(\mathbf{G}) = \mathbf{G}$ for some $i \ge 1$.

Lemma

 A group is not nilpotent iff G/Zⁱ(G) is centreless (non-trivial) for some i ≥ 1;

< ロ > < 同 > < 回 > < 回 >

Definition

Let **G** be a group. $Z^{i}(\mathbf{G})$, the *i*-th center of **G**, is:

- $Z^1(G) = Z(G),$
- for all i ≥ 1, Zⁱ⁺¹(G) is the inverse image of Z(G/Zⁱ(G)) under the natural homomorphism from G onto G/Zⁱ(G).

Definition

The group **G** is **nilpotent** if
$$Z^{i}(\mathbf{G}) = \mathbf{G}$$
 for some $i \ge 1$.

Lemma

- A group is not nilpotent iff G/Zⁱ(G) is centreless (non-trivial) for some i ≥ 1;
- The congruence associated to $Z^i(\mathbf{G})$ is definable for all $i \geq 1$.

Theorem

Let **G** be a non-nilpotent group. Then QCSP(G) is Pspace-complete.

4 A N

- E - N

Theorem

Let **G** be a non-nilpotent group. Then QCSP(**G**) is Pspace-complete.

Proof: Immediate by the previous results.

Kearnes, Larose, Martin, Szendrei

QCSPs on finite groups

AMS 2020 17 / 17