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A decision problem: QCSP(G)

Let G = (G; -, 1) be a finite group.

QCSP(G)

@ Instance: a sentence Vy;3xy - - -Vyp3xp O,
where o is a conjunction of term equations over G;

@ Problem: Is the sentence true ?
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Another decision problem: QCSP,(G)

Let G = (G; -, 1) be a finite group.

QCSP,(G)

@ Instance: a sentence Vy;3xy - - -Vyp3xp O,
where o is a conjunction of polynomial equations over G;

@ Problem: Is the sentence true ?
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Let G = (G; -, 1) be a finite group.
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Context

@ the above problems are (logspace-equivalent to) a special case of
the general QCSP problem QCSP(I') where T is a set of finitary
relations on a finite domain;
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@ the above problems are (logspace-equivalent to) a special case of
the general QCSP problem QCSP(I') where T is a set of finitary
relations on a finite domain;

@ on the other hand, QCSP(G) and QCSP.(G) generalise the
problems CSP(G) and CSP.(G) (by forbidding the use of V):

» CSP(G): is a given system of term equations over G satisfiable ?
* Trivial (set every variable to 1)

» CSP.(G): is a given system of polynomial equations over G
satisfiable ?

* in P if G is Abelian, NP-c otherwise. (Goldmann, Russell, 2002).
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Context

@ the above problems are (logspace-equivalent to) a special case of
the general QCSP problem QCSP(I') where T is a set of finitary
relations on a finite domain;

@ on the other hand, QCSP(G) and QCSP.(G) generalise the
problems CSP(G) and CSP.(G) (by forbidding the use of V):

» CSP(G): is a given system of term equations over G satisfiable ?
* Trivial (set every variable to 1)

» CSP.(G): is a given system of polynomial equations over G
satisfiable ?
* in P if G is Abelian, NP-c otherwise. (Goldmann, Russell, 2002).
* Intriguing (same authors): deciding satisfiability of a single equation is
NP-c for non-solvable groups, in P for nilpotent groups (and otherwise
still open).

*kkkk
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Context, continued

@ because our problems are equivalent to problems of the form
QCSP(T'), known tools can be used:
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Context, continued

@ because our problems are equivalent to problems of the form
QCSP(T'), known tools can be used:

@ complexity is controlled by the onto polymorphisms of the
constraint relations (BBCJK, 2009):

@ in our context, the constraint relation is g = {(x,y,2) : xy = z}
together with singleton unary relations for QCSP;(G), and thus
the “polymorphisms” are:

» the onto group homomorphisms f : G” — G for QCSP(G),
» the idempotent group homomorphisms f : G" — G for QCSP.(G),
i.e. satisfying f(x, x,...,x) =xforall x € G.

*kkk*k
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Preliminaries

@ In general QCSP(T) is in Pspace;
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Preliminaries

@ In general QCSP(T) is in Pspace;
@ if the onto polymorphisms are essentially unary then QCSP(T) is
Pspace-complete (BBCJK, 2009);
@ If G is non-Abelian, QCSP.(G) is NP-hard;
» because of CSP;(G)

@ Clearly QCSP,(G) is always as hard as QCSP(G).

*kkkk
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A tractable case

Theorem

If G is Abelian, then both QCSP(G) and QCSP,(G) are in P

=] = = E na
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A tractable case

Theorem
If G is Abelian, then both QCSP(G) and QCSP.(G) are in P J

Proof: If G is Abelian, then the Maltsev operation

M(x.y.z)=x—y+z2

is an idempotent group homomorphism M : G2 — G. By BBCJK, 2009,
the presence of a Maltsev polymorphism guarantees tractability. O
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A tractable case

Theorem
If G is Abelian, then both QCSP(G) and QCSP.(G) are in P J

Proof: If G is Abelian, then the Maltsev operation

M(x,y,z)=x—-y+z
is an idempotent group homomorphism M : G2 — G. By BBCJK, 2009,
the presence of a Maltsev polymorphism guarantees tractability. O

@ At the moment we have no other tractable cases
(and there are probably no others (?))
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A hardness criterion

Definition

Let G be a group, and let 6 be a relation on G. We say that 6 is
definable on G if it can be defined using 7g and = using conjunction,
and the existential and universal quantifiers.
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A hardness criterion

Definition

Let G be a group, and let 6 be a relation on G. We say that 6 is
definable on G if it can be defined using 7g and = using conjunction,
and the existential and universal quantifiers.

@ Alternatively, 6 is definable if and only if it is invariant under all
onto group homomorphisms f : G" — G.

@ Forinstance, if 6 is the congruence determined by the center
Z(G), then it is definable:

0={(x,y):Vz,xy 'z=zxy '}

AMS 2020 8/17
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A hardness criterion, continued

@ Let 0 be an equivalence relation on G, let f be an operation on G
that preserves 6. Let f? denote the operation induced by f on the
0-blocks, i.e.

f(x1/0,...,xn)0) = f(X1,...,%n)/0.
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A hardness criterion, continued

@ Let 6 be an equivalence relation on G, let f be an operation on G
that preserves 6. Let f? denote the operation induced by f on the
0-blocks, i.e.

f(x1/0,...,xn)0) = f(xq,...,Xn)/0.

Lemma

Let# + G? be a definable equivalence relation on G. If f is essentially
unary for every onto homomorphism f : G" — G then QCSP(G) is
Pspace-complete.
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A hardness criterion, continued

@ Let 6 be an equivalence relation on G, let f be an operation on G
that preserves 6. Let f? denote the operation induced by f on the
0-blocks, i.e.

f(x1/0,...,xn)0) = f(xq,...,Xn)/0.

Lemma

Let# + G? be a definable equivalence relation on G. If f is essentially
unary for every onto homomorphism f : G" — G then QCSP(G) is
Pspace-complete.

Proof: This is a straightforward application of results from
BBCJK, 2009 and Chen, Mayr 2016. O

Kearnes, Larose, Martin, Szendrei QCSPs on finite groups AMS 2020 9/17



Strategy

@ |t seems reasonable at this point to aim for a proof of
Pspace-hardness for QCSP(G) for any non-Abelian group;
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@ It seems reasonable at this point to aim for a proof of
Pspace-hardness for QCSP(G) for any non-Abelian group;
@ A possible strategy: if a definable quotient of G is onto-trivial, by
our criterion QCSP(G) is Pspace-complete;
@ Hence it would be interesting to characterise groups that are
» onto-trivial, i.e. whose onto homomorphisms are all essentially
unary;
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Strategy

@ It seems reasonable at this point to aim for a proof of
Pspace-hardness for QCSP(G) for any non-Abelian group;

@ A possible strategy: if a definable quotient of G is onto-trivial, by
our criterion QCSP(G) is Pspace-complete;
@ Hence it would be interesting to characterise groups that are

» onto-trivial, i.e. whose onto homomorphisms are all essentially
unary;

» idempotent trivial, i.e. whose idempotent homomorphisms are are
projections.

@ Stumbling blocks: direct products, nilpotent groups .....
(more on this later);

@ from now on, most of the work is group-theoretic.

@ Notation: [A, B] = subgroup generated by the aba="'b~";
G - [G,G].
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Onto homomorphisms: a crucial result

Definition
Let G be a group. Let f : G” — G be an onto homomorphism.
Foreach 1 <i<n, let

e fi(x)=f(1,1,...,1,x,1,...,1) (x in i — th position),

@ let A; be the image of f; in G.
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Foreach 1 <i<n, let

e fi(x)=f(1,1,...,1,x,1,...,1) (x in i — th position),

@ let A; be the image of f; in G.

The following observations are fairly straightforward:

Lemma
@ Each f; is an endomorphism of G, and
f(X1,...,Xn) = fi(xq) - - fa(Xn);
e \/A,' = G,'
Q [ALA]l=1and AinA; < Z(G)ifi #j;
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Onto homomorphisms: a crucial result

Definition
Let G be a group. Let f : G” — G be an onto homomorphism.
Foreach 1 <i<n, let

e fi(x)=f(1,1,...,1,x,1,...,1) (x in i — th position),

@ let A; be the image of f; in G.

The following observations are fairly straightforward:

Lemma
@ Each f; is an endomorphism of G, and
f(X1,...,Xn) = f1(X1) - - - fa(Xn);
Q VA =G;
Q [ALA]l=1and AinA; < Z(G)ifi #j;
Q iffjisontothen A; < Z(G) for all i # j.
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Onto homomorphisms: a crucial result, continued

Theorem
Let G be a group. Then the following are equivalent:
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Onto homomorphisms: a crucial result, continued

Theorem
Let G be a group. Then the following are equivalent:
@ G is directly indecomposable;
@ for each onto f : G" — G there exists some i such that f; is onto

© for any homomorphic images H; of G, if G is a homomorphic
image of [ [ H; then there exists some i such thatH; ~ G.

J

Kearnes, Larose, Martin, Szendrei QCSPs on finite groups AMS 2020

12/17



Onto homomorphisms: a crucial result, continued

Theorem

Let G be a group. Then the following are equivalent:
@ G is directly indecomposable;

@ foreachonto f: G" — G there exists some i such that f; is onto;

© for any homomorphic images H; of G, if G is a homomorphic
image of [ [ H; then there exists some i such thatH; ~ G.

Notes on proof:
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Onto homomorphisms: a crucial result, continued

Theorem

Let G be a group. Then the following are equivalent:
@ G is directly indecomposable;

@ foreachonto f: G" — G there exists some i such that f; is onto;

© for any homomorphic images H; of G, if G is a homomorphic
image of [ [ H; then there exists some i such thatH; ~ G.

Notes on proof:

@ the non-trivial partis (1) = (2), rest is easy;
@ main idea for -(2) = —(1): iterate applications of all the f; on G

to produce a non-trivial normal retract, i.e. a non-trivial direct
factor.

Kearnes, Larose, Martin, Szendrei
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Characterisation of onto-trivial groups

Theorem
Let G be a group, |G| > 2. Then the following are equivalent:

Kearnes, Larose, Martin, Szendrei QCSPs on finite groups AMS 2020 18/17



Characterisation of onto-trivial groups

Theorem

Let G be a group, |G| > 2. Then the following are equivalent:
@ G is 2-idempotent trivial;

Kearnes, Larose, Martin, Szendrei QCSPs on finite groups AMS 2020 13/17



Characterisation of onto-trivial groups

Theorem

Let G be a group, |G| > 2. Then the following are equivalent:
@ G is 2-idempotent trivial;
@ G is idempotent-trivial;

Kearnes, Larose, Martin, Szendrei QCSPs on finite groups AMS 2020 13/17



Characterisation of onto-trivial groups

Theorem

Let G be a group, |G| > 2. Then the following are equivalent:
@ G is 2-idempotent trivial;
@ G is idempotent-trivial;
@ G is onto-trivial;

Kearnes, Larose, Martin, Szendrei QCSPs on finite groups AMS 2020 13/17



Characterisation of onto-trivial groups
Theorem
Let G be a group, |G| > 2. Then the following are equivalent:
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Q G is directly indecomposable, and if « : G — Z(G) thena = 1;
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Characterisation of onto-trivial groups
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Characterisation of onto-trivial groups
Theorem
Let G be a group, |G| > 2. Then the following are equivalent:
@ G is 2-idempotent trivial;
@ G is idempotent-trivial;
@ G is onto-trivial;
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@ (4) = (3): easy, use “crucial” result and Lemma;
o (1) = (4):
» if G is decomposable it admits a non-trivial idempotent binary;
» if1#a:G— Z(G) then o(x) = xa(x) € Aut(G) and then
f(x,y) = o~ '(xa(y)) is a non-trivial binary idempotent.
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Characterisation of onto-trivial groups
Theorem
Let G be a group, |G| > 2. Then the following are equivalent:
@ G is 2-idempotent trivial;
@ G is idempotent-trivial;
@ G is onto-trivial;
Q G is directly indecomposable, and if « : G — Z(G) thena = 1;
@ G is directly indecomposable, and gcd(G/G', Z(G)) = 1.

@ (4) = (3): easy, use “crucial” result and Lemma;
o (1) = (4):
» if G is decomposable it admits a non-trivial idempotent binary;
» if1#a:G— Z(G) then o(x) = xa(x) € Aut(G) and then
f(x,y) = o~ '(xa(y)) is a non-trivial binary idempotent.

@ These groups are non-Abelian, e.g. centreless directly indecomposable
groups; there are others, e.g. SL,(F).
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A first hardness result

Theorem

If G is a directly indecomposable non-Abelian group, then
QCSP(G) is Pspace-complete.
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A first hardness result

Theorem

If G is a directly indecomposable non-Abelian group, then
QCSP(G) is Pspace-complete.

Proof: Let f : G" — G be onto; by our "crucial” result, G
indecomposable implies there exists an index j such that f; in onto. By
our remarks in the Lemma, it follows that A; < Z(G) for all i # j. Then

F(3Z,... xaZ) = f(X1,..., Xn)Z = F(X1) -+ Fo(Xn)Z = fi(x;)Z

so f¥ is essentially unary. We saw earlier that the congruence 6
associated to Z(G) is definable, and § # G? since G is not Abelian;
hence by our hardness criterion, we are done. O
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A second hardness result
Lemma

If G is centerless then QCSP(G) is Pspace-complete.
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@ Krull-Remak-Schmidt Theorem: asserts the uniqueness of internal direct
decomposition of G into indecomposable factors H;;

@ arguing on the H; as we did with the A;, and because G centreless, we
obtain another decomposition of G;
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A second hardness result

Lemma
If G is centerless then QCSP(G) is Pspace-complete. }

Sketch of proof:

@ Induction on the number of direct factors; if G indecomposable previous
result applies;

@ fixanontof: G" — G;

@ Krull-Remak-Schmidt Theorem: asserts the uniqueness of internal direct
decomposition of G into indecomposable factors H;;

@ arguing on the H; as we did with the A;, and because G centreless, we
obtain another decomposition of G;

@ by using Remak again, we obtain that each f; preserves each H;; ( “easy”
reduction if a H; is a hom image of another)

@ hence we may quotient out (any) one of the H;.

]
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A second hardness result, continued
Definition

Let G be a group. Z/(G), the i-th center of G, is:
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e forall i > 1, Z'*1(G) is the inverse image of Z(G/Z'(G)) under
the natural homomorphism from G onto G/Z'(G).
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The group G is nilpotent if Z/(G) = G for some i > 1.
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@ A group is not nilpotent iff G/Z'(G) is centreless (non-trivial) for
somei>1;
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Let G be a group. Z/(G), the i-th center of G, is:
e Z'(G) = Z(G),
e forall i > 1, Z'*1(G) is the inverse image of Z(G/Z'(G)) under
the natural homomorphism from G onto G/Z'(G).

Definition
The group G is nilpotent if Z/(G) = G for some i > 1.

Lemma

@ A group is not nilpotent iff G/Z'(G) is centreless (non-trivial) for
somei>1;

@ The congruence associated to Z'(Q) is definable for all i > 1.
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A second hardness result, continued

Theorem
Let G be a non-nilpotent group. Then QCSP(G) is Pspace-complete. J
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A second hardness result, continued

Theorem
Let G be a non-nilpotent group. Then QCSP(G) is Pspace-complete. J

Proof: Immediate by the previous results. O
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