Computational Complexity of Semigroup Properties

Trevor Jack

Joint work with Lukas Fleischer and Peter Mayr

- T

Introduction

Recently published paper

Lukas Fleischer, TJ, The Complexity of Properties of Transformation Semigroups, IJAC, 2019

A A A A

Introduction

Recently published paper

Lukas Fleischer, TJ, The Complexity of Properties of Transformation Semigroups, IJAC, 2019

Transformation Semigroups

•
$$[n] := \{1, ..., n\}$$

• T_n is the semigroup of all unary functions on [n]

•
$$S = \langle a_1, \ldots, a_k \rangle \leq T_n$$

Introduction

Recently published paper

Lukas Fleischer, TJ, The Complexity of Properties of Transformation Semigroups, IJAC, 2019

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$AC^0 \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME?$

< □ > < □ > < □ > < □ > < □ > < □ >

AC⁰ Problems

イロト イヨト イヨト イヨト

Definition

 AC^0 is the class of sets decidable by unbounded fan-in Boolean circuits of constant depth.

< A >

Definition

 AC^0 is the class of sets decidable by unbounded fan-in Boolean circuits of constant depth.

Theorem (Fleischer, TJ, 2019)

Testing for the following properties is in AC^0 .

• S is commutative.

Definition

AC⁰ is the class of sets decidable by unbounded fan-in Boolean circuits of constant depth.

Theorem (Fleischer, TJ, 2019)

Testing for the following properties is in AC^0 .

- S is commutative.
- S is a semilattice.

Definition

AC⁰ is the class of sets decidable by unbounded fan-in Boolean circuits of constant depth.

Theorem (Fleischer, TJ, 2019)

Testing for the following properties is in AC^0 .

- S is commutative.
- S is a semilattice.
- *S* is a group.

Definition

AC⁰ is the class of sets decidable by unbounded fan-in Boolean circuits of constant depth.

Theorem (Fleischer, TJ, 2019)

Testing for the following properties is in AC^0 .

- S is commutative.
- S is a semilattice.
- *S* is a group.

Consequences of $FO = AC^0$. Each of these properties can be characterized by first order formulas with quantification over generators and points.

(4) (日本)

AC^0 Problems

Definition

AC⁰ is the class of sets decidable by unbounded fan-in Boolean circuits of constant depth.

Theorem (Fleischer, TJ, 2019)

Testing for the following properties is in AC^0 .

- S is commutative.
- S is a semilattice
- S is a group.

Consequences of $FO = AC^0$. Each of these properties can be characterized by first order formulas with quantification over generators and points. For example, a commutative semigroup is characterized by $\forall x \in [n], \forall a_i, a_i(xa_ia_i = xa_ia_i).$ ・ロト ・ 同ト ・ ヨト ・ ヨト

NL-Complete Problems

3

< □ > < □ > < □ > < □ > < □ >

NL-Complete Problems

Definition

A semigroup S is \mathcal{R} -trivial if Green's \mathcal{R} relation is equality.

э

< □ > < 同 > < 回 > < 回 > < 回 >

NL-Complete Problems

Definition

A semigroup S is \mathcal{R} -trivial if Green's \mathcal{R} relation is equality.

Theorem (Fleischer, TJ, 2019)

Testing for the following properties is in NL-complete.

S contains a left zero.

▲ □ ▶ ▲ □ ▶ ▲ □

NL-Complete Problems

Definition

A semigroup S is \mathcal{R} -trivial if Green's \mathcal{R} relation is equality.

Theorem (Fleischer, TJ, 2019)

Testing for the following properties is in NL-complete.

- S contains a left zero.
- S contains a right zero.

NL-Complete Problems

Definition

A semigroup S is \mathcal{R} -trivial if Green's \mathcal{R} relation is equality.

Theorem (Fleischer, TJ, 2019)

Testing for the following properties is in NL-complete.

- S contains a left zero.
- S contains a right zero.
- S contains a zero.

NL-Complete Problems

Definition

A semigroup S is \mathcal{R} -trivial if Green's \mathcal{R} relation is equality.

Theorem (Fleischer, TJ, 2019)

Testing for the following properties is in NL-complete.

- S contains a left zero.
- S contains a right zero.
- S contains a zero.
- S is nilpotent.

NL-Complete Problems

Definition

A semigroup S is \mathcal{R} -trivial if Green's \mathcal{R} relation is equality.

Theorem (Fleischer, TJ, 2019)

Testing for the following properties is in NL-complete.

- S contains a left zero.
- S contains a right zero.
- S contains a zero.
- S is nilpotent.
- S is R-trivial.

3

<ロト <問ト < 目と < 目と

Model-Checking

Let *u* and *v* be semigroup words over variables x_1, \ldots, x_m .

э

4 E 5

Image: A match a ma

Model-Checking

Let *u* and *v* be semigroup words over variables x_1, \ldots, x_m .

Model(u = v)

- Input: $a_1, \ldots, a_k \in T_n$
- Problem: Does $\langle a_1, \ldots, a_k \rangle$ satisfy u = v?

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Model-Checking

Let *u* and *v* be semigroup words over variables x_1, \ldots, x_m .

Model(u = v)

• Input:
$$a_1, \ldots, a_k \in T_n$$

• Problem: Does $\langle a_1, \ldots, a_k \rangle$ satisfy u = v?

Theorem (Fleischer, TJ, 2019) For fixed u and v, Model(u = v) is in NL.

< □ > < 同 > < 回 > < 回 > < 回 >

Model-Checking

Let *u* and *v* be semigroup words over variables x_1, \ldots, x_m .

Model(u = v)

• Input:
$$a_1, \ldots, a_k \in T_n$$

• Problem: Does $\langle a_1, \ldots, a_k \rangle$ satisfy u = v?

Theorem (Fleischer, TJ, 2019)

For fixed u and v, Model(u = v) is in NL.

Note: This problem is dual to the well-known identity checking problem in which the semigroup is fixed and the identity is given.

< □ > < □ > < □ > < □ > < □ > < □ >

Model-Checking

Let *u* and *v* be semigroup words over variables x_1, \ldots, x_m .

Model(u = v)

• Input:
$$a_1, \ldots, a_k \in T_n$$

• Problem: Does $\langle a_1, \ldots, a_k \rangle$ satisfy u = v?

Theorem (Fleischer, TJ, 2019)

For fixed u and v, Model(u = v) is in NL.

Note: This problem is dual to the well-known identity checking problem in which the semigroup is fixed and the identity is given. There are semigroups for which the identity checking problem is coNP-complete.

< □ > < □ > < □ > < □ > < □ > < □ >

Sketch of algorithm by example

• Let u = xyx and v = yx.

3

イロト イヨト イヨト イヨト

Sketch of algorithm by example

- Let u = xyx and v = yx.
- Nondeterministically guess points p, px, pxy, pxyx, py, pyx ∈ [n] such that pxyx ≠ pyx.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Sketch of algorithm by example

- Let u = xyx and v = yx.
- Nondeterministically guess points p, px, pxy, pxyx, py, pyx ∈ [n] such that pxyx ≠ pyx.
- Nondeterministically guess generators for elements x and y until they correspond to the guessed points.

< □ > < 同 > < 三 > < 三 >

Model-Checking

Let *u* and *v* be semigroup words over variables x_1, \ldots, x_m .

Model(u = v)

• Input:
$$a_1, \ldots, a_k \in T_n$$

• Problem: Does $\langle a_1, \ldots, a_k \rangle$ model u = v?

Theorem (Fleischer, TJ, 2019)

```
For fixed u and v, Model(u = v) is in NL.
```

Model-Checking

Let *u* and *v* be semigroup words over variables x_1, \ldots, x_m .

Model(u = v)

• Input:
$$a_1, \ldots, a_k \in T_n$$

• Problem: Does $\langle a_1, \ldots, a_k \rangle$ model u = v?

Theorem (Fleischer, TJ, 2019)

```
For fixed u and v, Model(u = v) is in NL.
```

• Model(
$$x = x$$
) is always true.

Model-Checking

Let *u* and *v* be semigroup words over variables x_1, \ldots, x_m .

Model(u = v)

• Input:
$$a_1, \ldots, a_k \in T_n$$

• Problem: Does $\langle a_1, \ldots, a_k \rangle$ model u = v?

Theorem (Fleischer, TJ, 2019)

```
For fixed u and v, Model(u = v) is in NL.
```

- Model(x = x) is always true.
- Model(xy = yx) is in AC⁰.

Model-Checking

Let *u* and *v* be semigroup words over variables x_1, \ldots, x_m .

Model(u = v)

• Input:
$$a_1, \ldots, a_k \in T_n$$

• Problem: Does $\langle a_1, \ldots, a_k \rangle$ model u = v?

Theorem (Fleischer, TJ, 2019)

```
For fixed u and v, Model(u = v) is in NL.
```

- Model(x = x) is always true.
- Model(xy = yx) is in AC⁰.
- Theorem (Fleischer, TJ, 2019): Model($x^2y = x^2$) is NL-complete.

NL and P Problems

Theorem (Fleischer, TJ, 2019)

Model $(x_1 = x_1^2, \dots, x_s = x_s^2 \Rightarrow u = v)$ is in NL. Thus, the following problems are also in NL.

• • • • • • • • • • • •

NL and P Problems

Theorem (Fleischer, TJ, 2019) Model $(x_1 = x_1^2, ..., x_s = x_s^2 \Rightarrow u = v)$ is in NL. Thus, the following problems are also in NL. • S is a band:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NL and P Problems

Theorem (Fleischer, TJ, 2019)

Model $(x_1 = x_1^2, ..., x_s = x_s^2 \Rightarrow u = v)$ is in NL. Thus, the following problems are also in NL.

- *S* is a band;
- all idempotents of S commute;

< (17) > < (17) > <

NL and P Problems

Theorem (Fleischer, TJ, 2019)

 $Model(x_1 = x_1^2, \dots, x_s = x_s^2 \Rightarrow u = v)$ is in NL. Thus, the following problems are also in NL.

- S is a band;
- all idempotents of *S* commute;
- the product of any two idempotents in S is idempotent.

NL and P Problems

Theorem (Fleischer, TJ, 2019)

 $Model(x_1 = x_1^2, \dots, x_s = x_s^2 \Rightarrow u = v)$ is in NL. Thus, the following problems are also in NL.

- S is a band;
- all idempotents of *S* commute;
- the product of any two idempotents in S is idempotent.

Determining if every idempotent of a semigroup is central is NL-complete.

▲ □ ▶ ▲ □ ▶ ▲ □

NL and P Problems

Theorem (Fleischer, TJ, 2019)

 $Model(x_1 = x_1^2, \dots, x_s = x_s^2 \Rightarrow u = v)$ is in NL. Thus, the following problems are also in NL.

- S is a band;
- all idempotents of *S* commute;
- the product of any two idempotents in S is idempotent.

Determining if every idempotent of a semigroup is central is NL-complete.

Theorem (Fleischer, TJ, 2019)

Determining if a semigroup is completely regular is in NL.

< □ > < 同 > < 回 > < 回 > < 回 >

NL and P Problems

```
Theorem (Fleischer, TJ, 2019)
```

 $Model(x_1 = x_1^2, \dots, x_s = x_s^2 \Rightarrow u = v)$ is in NL. Thus, the following problems are also in NL.

- S is a band;
- all idempotents of *S* commute;
- the product of any two idempotents in S is idempotent.

Determining if every idempotent of a semigroup is central is NL-complete.

Theorem (Fleischer, TJ, 2019)

Determining if a semigroup is completely regular is in NL.

Theorem (Fleischer, TJ, 2019

The left and right identities of a transformation semigroup can be enumerated in polynomial time.

Trevor Jack

Regular Element

- Input: $a_1, \ldots, a_k \in T_n$
- Problem: Is there $s \in \langle a_1, \ldots, a_k \rangle$ such that $a_k s a_k = a_k$?

3

< □ > < 同 > < 回 > < 回 > < 回 >

Regular Element

- Input: $a_1, \ldots, a_k \in T_n$
- Problem: Is there $s \in \langle a_1, \ldots, a_k \rangle$ such that $a_k s a_k = a_k$?

Theorem (Fleischer, TJ, 2019)

Regular Element is PSPACE-complete:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Regular Element

- Input: $a_1, \ldots, a_k \in T_n$
- Problem: Is there $s \in \langle a_1, \ldots, a_k \rangle$ such that $a_k s a_k = a_k$?

Theorem (Fleischer, TJ, 2019)

Regular Element is PSPACE-complete:

Proof reduces from the following problem shown to be PSPACE-complete by Kozen in 1977.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Regular Element

- Input: $a_1, \ldots, a_k \in T_n$
- Problem: Is there $s \in \langle a_1, \ldots, a_k \rangle$ such that $a_k s a_k = a_k$?

Theorem (Fleischer, TJ, 2019)

Regular Element is PSPACE-complete:

Proof reduces from the following problem shown to be PSPACE-complete by Kozen in 1977.

Finite Automata Intersection

- Input: Automata A_1, \ldots, A_m over a shared alphabet a_1, \ldots, a_k .
- Problem: Is there a $w \in \{a_1, \ldots, a_k\}^*$ accepted by each automaton?

イロト イポト イヨト イヨト

• Extend the states of the automata to include a new state 0.

э

< □ > < 同 > < 回 > < 回 > < 回 >

- Extend the states of the automata to include a new state 0.
- Define a_1, \ldots, a_k to act on the automata states naturally and to fix 0.

э

< □ > < □ > < □ > < □ > < □ > < □ >

- Extend the states of the automata to include a new state 0.
- Define a_1, \ldots, a_k to act on the automata states naturally and to fix 0.
- Define a new transition *b* that: (1) sends accepting states for each automata to corresponding start states and (2) sends every other state to 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Extend the states of the automata to include a new state 0.
- Define a_1, \ldots, a_k to act on the automata states naturally and to fix 0.
- Define a new transition *b* that: (1) sends accepting states for each automata to corresponding start states and (2) sends every other state to 0.
- An accepting word exists iff there exists c ∈ ⟨a₁,..., a_k, b⟩ such that bcb = b.

< □ > < 同 > < 三 > < 三 >

Matrix Semigroups

Notation

Trevor Jack

э

A D N A B N A B N A B N

Matrix Semigroups

Notation

• \mathbb{F}^n is the set of row vectors of length n over a field \mathbb{F}

э

b 4 T

< A > <

Notation

- \mathbb{F}^n is the set of row vectors of length n over a field \mathbb{F}
- $S = \langle a_1, \ldots, a_k \rangle \leq \mathbb{F}^{n \times n}$ under multiplication

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Notation

- \mathbb{F}^n is the set of row vectors of length n over a field \mathbb{F}
- $S = \langle a_1, \dots, a_k \rangle \leq \mathbb{F}^{n \times n}$ under multiplication

Theorem (TJ 2020)

The following can be solved in polynomial time:

(4) (日本)

Notation

- \mathbb{F}^n is the set of row vectors of length n over a field \mathbb{F}
- $S = \langle a_1, \dots, a_k \rangle \leq \mathbb{F}^{n \times n}$ under multiplication

Theorem (TJ 2020)

The following can be solved in polynomial time:

enumerate left identities;

- 4 回 ト 4 ヨ ト 4 ヨ ト

Notation

- \mathbb{F}^n is the set of row vectors of length n over a field \mathbb{F}
- $S = \langle a_1, \ldots, a_k \rangle \leq \mathbb{F}^{n \times n}$ under multiplication

Theorem (TJ 2020)

The following can be solved in polynomial time:

- enumerate left identities;
- enumerate right identities; and

・ 何 ト ・ ヨ ト ・ ヨ ト

Matrix Semigroups

Notation

- \mathbb{F}^n is the set of row vectors of length n over a field \mathbb{F}
- $S = \langle a_1, \ldots, a_k \rangle < \mathbb{F}^{n \times n}$ under multiplication

Theorem (TJ 2020)

The following can be solved in polynomial time:

- enumerate left identities;
- enumerate right identities; and
- determine nilpotence.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

A D N A B N A B N A B N

Notation

• P_n is the semigroup of all unary partial functions on [n]

э

-

< A >

Notation

- P_n is the semigroup of all unary partial functions on [n]
- dom(ab) := { $x \in [n] : xa \in dom(b)$ }

э

- 4 回 ト 4 ヨ ト 4 ヨ ト

Notation

- P_n is the semigroup of all unary partial functions on [n]
- dom(ab) := { $x \in [n] : xa \in \text{dom}(b)$ }
- $S = \langle a_1, \ldots, a_k \rangle \leq P_n$

э

- 4 回 ト 4 ヨ ト 4 ヨ ト

Notation

• *P_n* is the semigroup of all unary partial functions on [n]

• dom
$$(ab) := \{x \in [n] : xa \in dom(b)\}$$

• $S = \langle a_1, \ldots, a_k \rangle \leq P_n$

Theorem (TJ 2020)

Checking if S is a band is in AC^0 .

・ 何 ト ・ ヨ ト ・ ヨ ト

Notation

• *P_n* is the semigroup of all unary partial functions on [n]

• dom
$$(ab) := \{x \in [n] : xa \in dom(b)\}$$

• $S = \langle a_1, \ldots, a_k \rangle \leq P_n$

Theorem (TJ 2020)

Checking if S is a band is in AC^0 .

Membership

- Input: $a_1, \ldots, a_k, b \in P_n$
- Output: $b \in \langle a_1, \ldots, a_k \rangle$?

(4) (日本)

Notation

• *P_n* is the semigroup of all unary partial functions on [n]

• dom(
$$ab$$
) := { $x \in [n] : xa \in dom(b)$ }

• $S = \langle a_1, \ldots, a_k \rangle \leq P_n$

Theorem (TJ 2020)

Checking if S is a band is in AC^0 .

Membership

- Input: $a_1, \ldots, a_k, b \in P_n$
- Output: $b \in \langle a_1, \ldots, a_k \rangle$?

Theorem (TJ 2020)

Membership is PSPACE-complete

Notation

• *P_n* is the semigroup of all unary partial functions on [n]

• dom(
$$ab$$
) := { $x \in [n] : xa \in dom(b)$ }

• $S = \langle a_1, \ldots, a_k \rangle \leq P_n$

Theorem (TJ 2020)

Checking if S is a band is in AC^0 .

Membership

- Input: $a_1, \ldots, a_k, b \in P_n$
- Output: $b \in \langle a_1, \ldots, a_k \rangle$?

Theorem (TJ 2020)

Membership is PSPACE-complete

3

・ロト ・四ト ・ヨト ・ヨト

PSPACE-hardness: Reduce from membership problem for $S \leq T_n$.

3

イロト イポト イヨト イヨト

PSPACE-hardness: Reduce from membership problem for $S \leq T_n$.

Given $a_1, \ldots, a_\ell \in T_n$, define points Q to be acted upon.

 $Q := \{(0,0,0)\} \bigcup \{(s,t,0) : s \in [n-1], t \in [\ell]\} \bigcup \{(q,r,1) : q, r \in [n]\}$

イロト イポト イヨト イヨト 二日

PSPACE-hardness: Reduce from membership problem for $S \leq T_n$. Given $a_1, \ldots, a_\ell \in T_n$, define points Q to be acted upon. $Q := \{(0,0,0)\} \bigcup \{(s,t,0) : s \in [n-1], t \in [\ell]\} \bigcup \{(q,r,1) : q, r \in [n]\}$ Define $\overline{S} := \langle a_{1,1,1}, \ldots, a_{n,n,\ell} \rangle \leq P_Q$ as follows:

PSPACE-hardness: Reduce from membership problem for $S \leq T_n$. Given $a_1, \ldots, a_\ell \in T_n$, define points Q to be acted upon. $Q := \{(0,0,0)\} \bigcup \{(s,t,0) : s \in [n-1], t \in [\ell]\} \bigcup \{(q,r,1) : q, r \in [n]\}$ Define $\overline{S} := \langle a_{1,1,1}, \ldots, a_{n,n,\ell} \rangle \leq P_Q$ as follows:

$$(s,t,0)a_{i,j,k} := egin{cases} (1,k,0) & ext{if } s = t = 0 ext{ and } j = 1 \ (s+1,k,0) & ext{if } t = k ext{ and } j-1 = s < n-1 \ (0,0,0) & ext{if } t = k ext{ and } j-1 = s = n-1 \end{cases}$$

$$(q,r,1) a_{i,j,k} := egin{cases} (qa_k,r,1) & ext{if } q=i ext{ and } r=j \ (q,r,1) & ext{if } r
eq j \end{cases}$$

Claim: $s \in S$ iff $\exists \overline{s} \in \overline{S}$ such that: $(0, 0, 0)\overline{s} = (0, 0, 0)$, $(x, x, 1)\overline{s} = (xs, x, 1)$ for each $x \in [n]$, and all other points are excluded from the domain of \overline{s} .

< 回 > < 三 > < 三

Claim: $s \in S$ iff $\exists \overline{s} \in \overline{S}$ such that: $(0, 0, 0)\overline{s} = (0, 0, 0)$, $(x, x, 1)\overline{s} = (xs, x, 1)$ for each $x \in [n]$, and all other points are excluded from the domain of \overline{s} .

Assume $s \in S$, with $s = a_{k_1} \cdots a_{k_p}$. Let $s_{\ell} = a_{k_1} \cdots a_{k_{\ell}}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Claim: $s \in S$ iff $\exists \overline{s} \in \overline{S}$ such that: $(0, 0, 0)\overline{s} = (0, 0, 0)$, $(x, x, 1)\overline{s} = (xs, x, 1)$ for each $x \in [n]$, and all other points are excluded from the domain of \overline{s} .

Assume $s \in S$, with $s = a_{k_1} \cdots a_{k_p}$. Let $s_{\ell} = a_{k_1} \cdots a_{k_{\ell}}$.

 $\overline{s} = a_{1,1,k_1} \cdots a_{n,n,k_1} a_{1s_1,1,k_2} \cdots a_{ns_1,n,k_2} \cdots a_{1s_{p-1},1,k_p} \cdots a_{ns_{p-1},n,k_p}$

Claim: $s \in S$ iff $\exists \overline{s} \in \overline{S}$ such that: $(0, 0, 0)\overline{s} = (0, 0, 0)$, $(x, x, 1)\overline{s} = (xs, x, 1)$ for each $x \in [n]$, and all other points are excluded from the domain of \overline{s} .

Assume
$$s \in S$$
, with $s = a_{k_1} \cdots a_{k_p}$. Let $s_{\ell} = a_{k_1} \cdots a_{k_{\ell}}$.
 $\overline{s} = a_{1,1,k_1} \cdots a_{n,n,k_1} a_{1s_1,1,k_2} \cdots a_{ns_1,n,k_2} \cdots a_{1s_{p-1},1,k_p} \cdots a_{ns_{p-1},n,k_p}$
 $(0,0,0)\overline{s} = (0,0,0)$ and $(x,x,1)\overline{s} = (xs,x,1)$ for each $x \in [n]$.

< 回 > < 三 > < 三

Claim: $s \in S$ iff $\exists \overline{s} \in \overline{S}$ such that: $(0, 0, 0)\overline{s} = (0, 0, 0)$, $(x, x, 1)\overline{s} = (xs, x, 1)$ for each $x \in [n]$, and all other points are excluded from the domain of \overline{s} .

Assume
$$s \in S$$
, with $s = a_{k_1} \cdots a_{k_p}$. Let $s_{\ell} = a_{k_1} \cdots a_{k_{\ell}}$.
 $\overline{s} = a_{1,1,k_1} \cdots a_{n,n,k_1} a_{1s_1,1,k_2} \cdots a_{ns_1,n,k_2} \cdots a_{1s_{p-1},1,k_p} \cdots a_{ns_{p-1},n,k_p}$
 $(0,0,0)\overline{s} = (0,0,0)$ and $(x, x, 1)\overline{s} = (xs, x, 1)$ for each $x \in [n]$.

For the converse, the a_{ijk} are defined such that \overline{s} must have the specific structure above, allowing us to find $s = a_{k_1} \cdots a_{k_p}$.

(4 何) トイヨト イヨト