Modular Lattices Embedded into Congruence Lattices of Algebras in almost all Varieties

Ralph Freese

http://math.hawaii.edu/~ralph/
http://uacalc.org/
https://github.com/UACalc/

AMS Special Session: Algebras and Algorithms, JMM 2020

Ralph Freese

$\label{eq:conversion} \begin{array}{l} \mbox{Con} \ \mathcal{V} = \{\mbox{Con} \ \mbox{A} : \mbox{A} \in \mathcal{V} \} \\ \mbox{S} \mbox{Con} \ \mathcal{V} = \mbox{sublattices of these lattice} \end{array}$

Goal

 $\begin{array}{l} \textbf{Con } \mathcal{V} = \{\textbf{Con } \textbf{A}: \textbf{A} \in \mathcal{V}\} \\ \textbf{SCon } \mathcal{V} = \text{sublattices of these lattice} \\ \textbf{HSCon } \mathcal{V} = \textbf{HSPCon } \mathcal{V} = \textbf{VCon } \mathcal{V} \\ = \text{the congruence variety of } \mathcal{V} \end{array}$

Goal

 $\begin{array}{l} \textbf{Con } \mathcal{V} = \{ \textbf{Con } \textbf{A} : \textbf{A} \in \mathcal{V} \} \\ \textbf{S Con } \mathcal{V} = \text{sublattices of these lattice} \\ \textbf{HS Con } \mathcal{V} = \textbf{HSP Con } \mathcal{V} = \textbf{V Con } \mathcal{V} \\ = \text{the congruence variety of } \mathcal{V} \end{array}$

Goal: Show every modular lattice you have ever drawn (and several you haven't) is in **SCon** \mathcal{V} , for most \mathcal{V} .

Congruences as Algebras and their Congruence Lattices

A is an algebra and α a congruence on **A**.

Congruences as Algebras and their Congruence Lattices

A is an algebra and α a congruence on **A**.

 α is a subalgebra of **A**² denoted **A**(α) or **A** \times_{α} **A**.

Congruences as Algebras and their Congruence Lattices

A is an algebra and α a congruence on **A**.

- α is a subalgebra of \mathbf{A}^2 denoted $\mathbf{A}(\alpha)$ or $\mathbf{A} \times_{\alpha} \mathbf{A}$. For
- $\theta \in \mathbf{Con} \ \mathbf{A}$, define $\theta_i \in \mathbf{Con}(\mathbf{A}(\alpha))$, i = 0, 1, by

Congruences as Algebras and their Congruence Lattices

A is an algebra and α a congruence on **A**.

- α is a subalgebra of \mathbf{A}^2 denoted $\mathbf{A}(\alpha)$ or $\mathbf{A} \times_{\alpha} \mathbf{A}$. For
- $\theta \in \mathbf{Con} \mathbf{A}$, define $\theta_i \in \mathbf{Con}(\mathbf{A}(\alpha))$, i = 0, 1, by

$$\theta_i = \{ \langle \langle \boldsymbol{a}_0, \boldsymbol{a}_1 \rangle, \langle \boldsymbol{b}_0, \boldsymbol{b}_1 \rangle \rangle \in \boldsymbol{A}(\alpha) \times \boldsymbol{A}(\alpha) : \langle \boldsymbol{a}_i, \boldsymbol{b}_i \rangle \in \theta \}.$$

 η_0 and η_1 are the kernels of the projections (not 0_0 and 0_1).

Lemma

Let α , θ and ψ be congruences on **A**. With notation as above:

- (i) The map (a₀, a₁) → (a₁, a₀) defines an automorphism of A(α) which interchanges θ₀ and θ₁.
- (ii) The map $\theta \mapsto \theta_i$ is a lattice isomorphism of **Con A** onto the interval $I[\eta_i, 1_{\mathbf{A}(\alpha)}]$ of **Con A**(α), for i = 0, 1. So $(\theta \lor \psi)_i = \theta_i \lor \psi_i$ and dually.

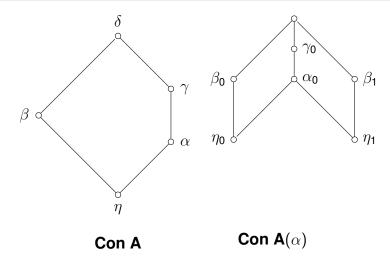
(iii) If
$$\psi \ge \alpha$$
 then $\psi_0 = \psi_1$.

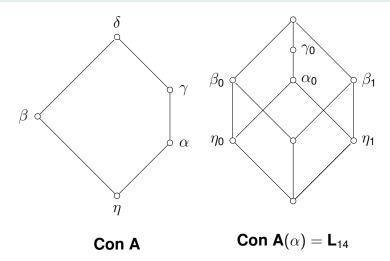
(iv)
$$\eta_0 \vee \eta_1 = \alpha_0 \ (= \alpha_1).$$

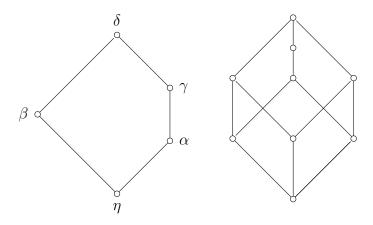
(v) η_0 and η_1 permute.

(vi) $(\theta_0 \wedge \theta_1) \vee \eta_0 = \theta_0$; in fact $\theta_0 = \eta_0 \circ (\theta_0 \wedge \theta_1) \circ \eta_0$.

Proof. Easy calculations.







Con A Con $A(\alpha) = L_{14}$

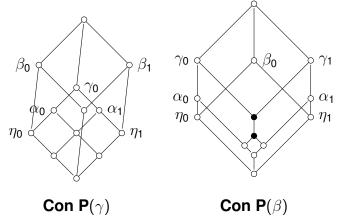
So if \mathcal{V} is not CM there is $\mathbf{A} \in \mathcal{V}$ with \mathbf{L}_{14} as a sublattice.

What about **Con A**(β) and **Con A**(γ)?

These are not uniquely determined but

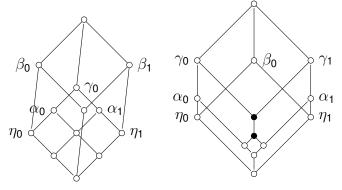
What about **Con A**(β) and **Con A**(γ)?

These are not uniquely determined but if $\mathbf{A} = \mathbf{P}$ is Polin's algebra:



What about **Con A**(β) and **Con A**(γ)?

These are not uniquely determined but if $\mathbf{A} = \mathbf{P}$ is Polin's algebra:



Con $P(\gamma)$ Con $P(\beta)$ Con $P(\beta)$ is SI and projective so is in *S* Con \mathcal{V} if it is not CM.

• If $\mathbf{A} \in \mathcal{V}$, \mathcal{V} CM, then Con $A \neq \mathbf{M}_7$.

- If $\mathbf{A} \in \mathcal{V}$, \mathcal{V} CM, then **Con** $A \neq \mathbf{M}_7$.
- (Nation) $\mathcal V$ not CM implies $L_{14} \in \textbf{SCon } \mathcal V$.

- If $\mathbf{A} \in \mathcal{V}$, \mathcal{V} CM, then Con $A \neq \mathbf{M}_7$.
- (Nation) \mathcal{V} not CM implies $L_{14} \in \textbf{SCon } \mathcal{V}$.
- (with Jónsson) If \mathcal{V} is CM, it is congruence Arguesian.

- If $\mathbf{A} \in \mathcal{V}$, \mathcal{V} CM, then Con $A \neq \mathbf{M}_7$.
- (Nation) \mathcal{V} not CM implies $L_{14} \in \textbf{SCon } \mathcal{V}$.
- (with Jónsson) If \mathcal{V} is CM, it is congruence Arguesian.
- (with A. Day) \mathcal{V} not CM implies $HS \operatorname{Con} \mathcal{P} \subseteq HS \operatorname{Con} \mathcal{V}$.

- If $\mathbf{A} \in \mathcal{V}$, \mathcal{V} CM, then Con $A \neq \mathbf{M}_7$.
- (Nation) \mathcal{V} not CM implies $L_{14} \in \textbf{SCon } \mathcal{V}$.
- (with Jónsson) If \mathcal{V} is CM, it is congruence Arguesian.
- (with A. Day) \mathcal{V} not CM implies **HS** Con $\mathcal{P} \subseteq$ **HS** Con \mathcal{V} .
- 𝒱 not CSD implies *HS* Con 𝔑_p ⊆ *HS* Con 𝒱, *p* a prime.
 (𝓜_p = vector spaces over 𝓕_p.)

$\mathcal V$ CM but not CD. Then $\exists \ \textbf{A} \in \mathcal V$ with $\textbf{M}_3 \leq \textbf{Con} \ \textbf{A}$

$\mathcal V \mbox{ CM}$ but not CD. Then $\exists \ \textbf{A} \in \mathcal V$ with $\textbf{M}_3 \leq \textbf{Con} \ \textbf{A}$ and

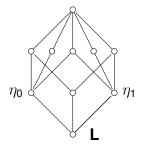
 \mathbf{M}_3 is a cover-preserving sublattice.

$\mathcal V \mbox{ CM}$ but not CD. Then $\exists \mbox{ } A \in \mathcal V \mbox{ with } M_3 \leq \mbox{ Con } A \mbox{ and }$

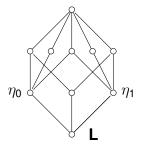
 \mathbf{M}_3 is a cover-preserving sublattice. This is due Jónsson; the idea of the proof is on the cover of every recent AU.

$\mathcal V$ CM but not CD. Then $\exists \ \textbf{A} \in \mathcal V$ with $\textbf{M}_3 \leq \textbf{Con} \ \textbf{A}$ and

 \mathbf{M}_3 is a cover-preserving sublattice. This is due Jónsson; the idea of the proof is on the cover of every recent AU. Applying the Useful Construction we get the following configuration which is only partial.

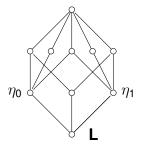


The picture of L is not complete but we can conclude:



The picture of L is not complete but we can conclude:

- It has length 3 and is simple (by modularity).
- It is complemented (by Crawley-Dilworth **4.3**).



The picture of L is not complete but we can conclude:

- It has length 3 and is simple (by modularity).
- It is complemented (by Crawley-Dilworth **4.3**).

Theorem

L is isomorphic to lattice of subspace of a vectors space of dimension 3, or a projective plane.

We can easily extend this to higher dimensions and conclude:

Theorem

If \mathcal{V} is CM but not CD, there is a p, a prime or 0, so that **SCon** \mathcal{V} contains \mathcal{L}_p , all subspace lattices of all finite dimensional vector spaces over the prime field of characteristic p.

We can easily extend this to higher dimensions and conclude:

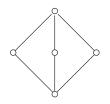
Theorem

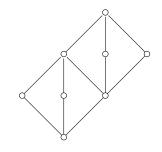
If \mathcal{V} is CM but not CD, there is a p, a prime or 0, so that **SCon** \mathcal{V} contains \mathcal{L}_p , all subspace lattices of all finite dimensional vector spaces over the prime field of characteristic p.

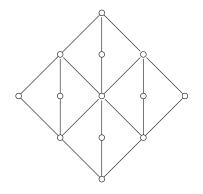
Corollary

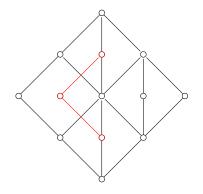
If
$$\mathcal{V}$$
 is CM but not CD and $\mathcal{K} = \bigcap_p \mathcal{L}_p$, then

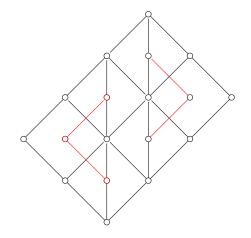
$$\mathcal{K} \subseteq \mathbf{SCon} \mathcal{V}.$$

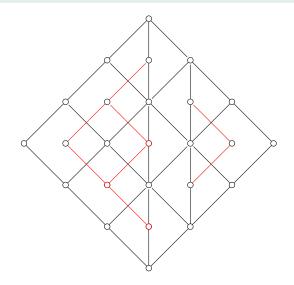










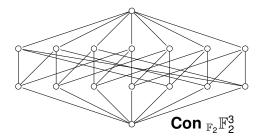


All modular lattices drawn above are **isometrically** embedded.

. .

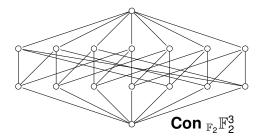
All modular lattices drawn above are **isometrically** embedded. \mathbf{M}_4 is in \mathcal{K} but cannot always be isometrically embedded.

All modular lattices drawn above are **isometrically** embedded. \mathbf{M}_4 is in \mathcal{K} but cannot always be isometrically embedded.



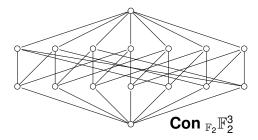
This lattice, the Fano plane, is not in \mathcal{K} .

All modular lattices drawn above are **isometrically** embedded. \mathbf{M}_4 is in \mathcal{K} but cannot always be isometrically embedded.



This lattice, the Fano plane, is not in \mathcal{K} . And it is possible some of you may have draw it.

All modular lattices drawn above are **isometrically** embedded. \mathbf{M}_4 is in \mathcal{K} but cannot always be isometrically embedded.



This lattice, the Fano plane, is not in \mathcal{K} . And it is possible some of you may have draw it.

Theorem If $HS Con \mathcal{V}$ contains a nondesarguean projective plane, it satisfies no congruence identity. Blob Freese Modular Sublattices of Congruence Lattices Jan 15, 2020 12/20

Some Mal'tsev Classes of Varieties

In Walter's interpretability lattice:

ο CP CM Q Satisfies a congruence identity Weak difference term Taylor term $\mathbf{b} \mathbf{x} \approx \mathbf{x}$

Some Mal'tsev Classes of Varieties

Theorem

If \mathcal{V} has a weak difference term and has an Abelian interval, there is a p, a prime or 0, so that **SCon** \mathcal{V} contains \mathcal{L}_p , all subspace lattices of all finite dimensional vector spaces over the prime field of characteristic p.

Some Mal'tsev Classes of Varieties

Theorem

If \mathcal{V} has a weak difference term and has an Abelian interval, there is a p, a prime or 0, so that **SCon** \mathcal{V} contains \mathcal{L}_p , all subspace lattices of all finite dimensional vector spaces over the prime field of characteristic p.

Corollary

If ${\mathcal V}$ has a weak difference term and is not $\text{CSD}_{\!\wedge},$ then

$\mathfrak{K}\subseteq \textbf{SCon}\, \mathcal{V}.$

Varieties with a Taylor Term

With a weak difference term, Abelian algebras are affine. With a Taylor term they are (only) quasi-affine.

Varieties with a Taylor Term

With a weak difference term, Abelian algebras are affine. With a Taylor term they are (only) quasi-affine. But we do have:

Corollary

If ${\mathcal V}$ is idempotent, has a Taylor term term and is not $\text{CSD}_{\!\wedge},$ then

 $\mathfrak{K} \subseteq \textbf{SCon}\, \mathfrak{V}.$

Problems

- Secall *K* = ∩_p *L*_p, where *L*_p is all subspace lattices of all finite dimensional vector spaces over the prime field of characteristic *p* (including *p* = 0). Is there a good description of *K*? Note it contains both simple nonplanar lattices and simple lattices that are not breadth 2.
- Solution Without assuming a weak difference term, if there is a proper abelian interval (somewhere in \mathcal{V}), can we find an algebra in \mathcal{V} with congruences $\theta \succ \varphi$ satisfying $C(\theta, \theta, \varphi)$?
- Is there an abelian algebra with a Taylor term whose congruence lattice is a descending chain such that each proper image is not abelian?
- (See next slide) Con $F_{\mathcal{P}}(1) \in HS$ Con \mathcal{V} , whenever \mathcal{V} is not CM. Is it always in S Con \mathcal{V} ?

Problems

 η₀₀ η_{01} η_{11} η_{10}

. . .

References

Emil Artin.

Coordinates in affine geometry. Rep. Math. Colloquium (2), 2:15–20, 1940.

G. Birkhoff.

Lattice Theory. Amer. Math. Soc., Providence, R. I., 1948. rev. ed., Colloquium Publications.

P. Crawley and R. P. Dilworth.

Algebraic Theory of Lattices. Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

Alan Day and Ralph Freese.

A characterization of identities implying congruence modularity. I. Canad. J. Math., 32(5):1140–1167, 1980.

R. Freese.

Finitely based modular congruence varieties are distributive. *Algebra Universalis*, 32(1):104–114, 1994.

Ralph Freese, Christian Herrmann, and András P. Huhn.

On some identities valid in modular congruence varieties. *Algebra Universalis*, 12(3):322–334, 1981.

Ralph Freese and Ralph McKenzie.

Commutator theory for congruence modular varieties, volume 125 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1987. Online version available at: http://www.math.hawaii.edu/~ralph/papers.html.

. . .

References

Ralph Freese and J. B. Nation.

Congruence lattices of semilattices. *Pacific J. Math.*, 49:51–58, 1973.

O. Frink.

Complemented modular lattices and projective spaces of infinite dimension. Trans. Amer. Math. Soc., 60:452–467, 1946.

H. P. Gumm.

Geometrical Methods in Congruence Modular Algebras. 1983.

Memoirs Amer. Math. Soc.

C. Herrmann.

Affine algebras in congruence modular varieties. *Acta Sci. Math. (Szeged)*, 41:119–125, 1979.

David Hobby and Ralph McKenzie.

The structure of finite algebras, volume 76 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1988.

B. Jónsson.

Representations of complemented modular lattices. *Trans. Amer. Math. Soc.*, 97:64–94, 1960.

B. Jónsson and G. S. Monk.

Representation of primary arguesian lattices. *Pacific J. Math.*, 30:95–139, 1969.

References

Keith A. Kearnes and Emil W. Kiss.

The shape of congruence lattices. Mem. Amer. Math. Soc., 222(1046):viii+169, 2013.

Keith A. Kearnes and Ágnes Szendrei.

The relationship between two commutators. Internat. J. Algebra Comput., 8(4):497–531, 1998.

Paolo Lipparini.

Commutator theory without join-distributivity. Trans. Amer. Math. Soc., 346(1):177–202, 1994.

S. V. Polin.

Identities in congruence lattices of universal algebras. *Mat. Zametki*, 22(3):443–451, 1977.

. .