Math 2001
Truth tables and logical equivalence

1. Write a truth table for the logical statement ~ (PV Q) = (~ PAQ). Do it step by step (i.e. include columns
for ~ P and PV Q etc., building up to the full expression).
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2. Is the example in the previous problem true? (Hint: Is P A @ true? Is PV @ true?)
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3. Two statments are logically equivalent if they have the same truth values regardless of the input values of the
variables. Name a much simpler expression that is logically equivalent to the expression in the first example.
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4. Prove DeMorgan’s Laws:

e ~(PAQ)=(~P)V(~Q),
e ~(PVQ)=(~P)N(~Q)
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5. In Section 2.4 you saw that P < @ is logically equivalent to (P = Q) A (@ = P). Thus, in some sense <
isn’t needed — it can be ‘generated’ by = and A. Now find a way to generate P = (@ using only V, A and
~. (This shows that in some sense < isn’t needed either!).
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6. A tautology is a Boolean expression that evaluates to TRUE for all possible values of its variables. Work together
(as always) to come up with an example of a tautology in two variables (you might try one variable first if you
are stuck). Provide a proof (that is, a truth table) that it is a tautology.
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7. A contradiction is a Boolean expression that evaluates to FALSE for all possible values of its variables. Come
up with an example of a contradiction in two variables and prove that it is one.
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8. How many lines (besides the header) does the truth table for a Boolean expression in 8 variables have?
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9. How many logically distinct Boolean expression could you define on two variables? Writing out all possibilities
is possible but a hassle. Instead figure out how to count the possibilities.
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10. Can all of the boolean expressions on two variables be constructed using only A, V, and ~7 In other words, are
all boolean expressions on two variables logically equivalent to one that combines only A, V, and ~7 Why or
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11. How many logically distinct Boolean expressions could you define on n variables?
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